
Practical Differentially Private Top-k
Selection with Pay-what-you-get Composition

David Durfee, Ryan Rogers

Task: Top-k

I Return the k most frequent
data elements from a large
dataset with d dimension.

I Example: What are the top-10
most popular articles among
data scientists in the Bay Area?
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Including Differential Privacy

I Data may contain sensitive information.
I The presence of a data element could be the result of

a single user’s data.
I Simple thresholding does not provide formal privacy

guarantees.
I Use differential privacy (DP) [DMNS] to protect the

individual’s in the data set.
I An algorithm M : X → Y is ε-DP if for all

neighboring inputs x, x ′ and any outcome sets
S ⊂ Y , we have

Pr[M(x) ∈ S] ≤ eε Pr[M(x ′) ∈ S] + δ.
Modified Goal: Select the top-k data elements subject to differential privacy.

Previous Work

Hasn’t this problem already been solved?

I Although it is well known that the exponential mechanism [MT] and report noisy
max [DR] can both solve this problem, the algorithms require knowing the full data
universe in advance.

I Other works have proposed solutions in the frequent itemset setting, where all
domain elements come from a sequence of known length and each element comes
from a known alphabet [BLST, LQSC, ZNC, LC? ].

I However, what if a data analyst has no knowledge of the data domain, as is the case
in exploratory analyses.

Various Settings for User Level Privacy

∆-Restricted Sensitivity Unrestricted Sensitivity

Known Domain Laplace Mechanism [DMNS] Exp Mechanism [MT]

Unknown Domain This work Algorithm 1 Algorithm 2

I Known domain setting is where the algorithm knows all possible data elements any
user can have, e.g. top-10 countries with a certain skill.

I Unknown domain setting is where algorithms have no knowledge of data domain,
e.g. top-10 articles viewed.

I Sensitivity of a histogram h is how much any one user can impact the counts when
her data is removed.

I We assume for all cases that for each h, h′ ∈ Nd that are neighbors,

||h − h′||∞ ≤ 1

I ∆-restricted sensitivity means for any neighbors h, h′:
||h − h′||0 ≤ ∆

I Unrestricted sensitivity means for any neighbors h, h′:
||h − h′||0 ≤ d

I Laplace Mechanism: Add Lap(1/ε) to each count. Can release top-k and counts
while being ∆ε-DP.

I Exponential Mechanism: Add Gumbel(1/ε) to each count. Only release top-k
(no counts) to ensure kε-DP.

Algorithm 1 - Unknown Domain with ∆-Restricted Sensitivity

I First find the top-(k̄ + 1): h(1) ≥ · · · ≥ h(k̄+1).

I Make noisy threshold: ĥ⊥ = h(k̄+1) + 1 + log(∆/δ) + Lap(1/ε).

I Add noise to each top-k̄ count:
ĥ1 = h(1) + Lap(1/ε), · · · , ĥk̄ = h(k̄) + Lap(1/ε).

I Sort noisy counts {ĥ1, · · · , ĥk̄, ĥ⊥} and release indices and counts that are larger
than ĥ⊥.

Algorithm 2 - Unknown Domain with Unrestricted Sensitivity

I First find the top-(k̄ + 1): h(1) ≥ · · · ≥ h(k̄+1).

I Make noisy threshold: ĥ⊥ = h(k̄+1) + 1 + log(k̄/δ) + Gumbel(1/ε).

I Add noise to each top-k̄ count:
ĥ1 = h(1) + Gumbel(1/ε), · · · , ĥk̄ = h(k̄) + Gumbel(1/ε).

I Sort noisy counts {ĥ1, · · · , ĥk̄, ĥ⊥} and release at most k indices with counts
larger than ĥ⊥ in sorted order.

Pay-what-you-get Composition

I Note that Algorithm 2 can return fewer than k elements.
I It turns out that despite asking for a top-k query, the privacy loss need only increase

by the amount of elements that are returned (plus 1).
I Given an overall privacy loss budget of k∗ many indices that can be returned, an

analyst can continue asking top-k queries until k∗ many indices have been returned.
I Analysis follows from stringing together adaptively chosen exponential mechanisms

with privacy parameter ε.
I Need to also account for how many top-k queries are asked `∗, not just the total

number of indices returned. This impacts the total δ.
I With each top-k query we update the privacy budget as

k∗← k∗ − (# of outcomes + 1) `∗← `∗ − 1

I Continue until either k∗ is 0 or `∗ is 0.
I The full system of top-k queries is (ε∗, `∗δ)-DP where

ε∗ ≈ ε
√

k∗ log(1/δ)

Improved Composition with Bounded Range Mechanisms

I Exp. mechanisms satisfy a stronger condition than DP.
I A mechanism M : X → Y is ε-bounded range (BR) if

for any neighbors x, x ′ ∈ X and outcome pairs
y , y ′ ∈ Y ,

Pr[M(x) = y ]

Pr[M(x ′) = y ]
≤ eε

Pr[M(x) = y ′]
Pr[M(x ′) = y ′]

I ε-BR =⇒ ε-DP and ε-DP =⇒ 2ε-BR.
I Leads to more than 50% improvement in overall privacy

loss compared to the optimal DP composition.
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Ratio of Privacy Loss for < 10 6

=   0.005
=  0.010
=  0.025
=  0.050

Recent optimal composition bounds: arxiv.org/abs/1909.13830
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