Task: Top-k
- Return the k most frequent data elements from a large dataset of dimension d.
- Example: What are the top-10 most popular articles among data scientists in the Bay Area?

Including Differential Privacy
- Data may contain sensitive information.
- The presence of a data element could be the result of a single user's data.
- Simple thresholding does not provide formal privacy guarantees.
- Use differential privacy (DP) [DMNS] to protect the individual's in the data set.
- An algorithm $M : X \rightarrow Y$ is ϵ-DP if for all neighboring inputs x, x' and any outcome sets $S \subseteq Y$, we have
\[
\Pr[M(x) \in S] \leq e^\epsilon \Pr[M(x') \in S] + \delta.
\]

Modified Goal: Select the top-k data elements subject to differential privacy.

Previous Work

Hasn't this problem already been solved?
- Although it is well known that the exponential mechanism [MT] and report noisy max [DR] can both solve this problem, the algorithms require knowing the full data universe in advance.
- Other works have proposed solutions in the frequent itemset setting, where all domain elements come from a sequence of known length and each element comes from a known alphabet [BLST, LQSC, ZNC, LC?].
- However, what if a data analyst has no knowledge of the data domain, as is the case in exploratory analyses.

Various Settings for User Level Privacy

<table>
<thead>
<tr>
<th>Known Domain</th>
<th>Laplace Mechanism [DMNS]</th>
<th>Δ-Restricted Sensitivity</th>
<th>Unrestricted Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Algorithm 1</td>
<td>Algorithm 2</td>
<td></td>
</tr>
</tbody>
</table>

Known domain setting is where the algorithm knows all possible data elements any user can have, e.g., top-10 countries with a certain skill.

Unknown domain setting is where algorithms have no knowledge of data domain, e.g., top-10 articles viewed.

Sensitivity of a histogram h is how much any one user can impact the counts when her data is removed.

We assume for all cases that for each $h, h' \in \mathbb{N}^d$ that are neighbors,
\[
||h - h'||_\infty \leq 1
\]

- Δ-restricted sensitivity means for any neighbors h, h':
\[
||h - h'||_\infty \leq \Delta
\]
- Unrestricted sensitivity means for any neighbors h, h':
\[
||h - h'||_\infty \leq d
\]

Laplace Mechanism: Add $\text{Lap}(1/\epsilon)$ to each count. Can release top-k and counts while being Δ-DP.

Exponential Mechanism: Add $\text{Gumbel}(1/\epsilon)$ to each count. Only release top-k (no counts) to ensure $k\epsilon$-DP.

Algorithm 1 - Unknown Domain with Δ-Restricted Sensitivity
- First find the top-$(\bar{k} + 1)$: $h_{\bar{k}+1} \geq \cdots \geq h_{1}$.
- Make noisy threshold: $\tilde{h}_1 = h_{\bar{k}+1} + 1 + \log(\Delta/\delta) + \text{Lap}(1/\epsilon)$.
- Add noise to each top-k count: $\tilde{h}_1 = h_{\bar{k}+1} + \text{Lap}(1/\epsilon), \cdots, \tilde{h}_k = h_{\bar{k}+1} + \text{Lap}(1/\epsilon)$.
- Sort noisy counts $\{\tilde{h}_1, \cdots, \tilde{h}_k, \tilde{h}_1\}$ and release indices and counts that are larger than \tilde{h}_1.

Algorithm 2 - Unknown Domain with Unrestricted Sensitivity
- First find the top-$(\bar{k} + 1)$: $h_{\bar{k}+1} \geq \cdots \geq h_{1}$.
- Make noisy threshold: $\tilde{h}_1 = h_{\bar{k}+1} + 1 + \log(\bar{k}/\delta) + \text{Gumbel}(1/\epsilon)$.
- Add noise to each top-k count: $\tilde{h}_1 = h_{\bar{k}+1} + \text{Gumbel}(1/\epsilon), \cdots, \tilde{h}_k = h_{\bar{k}+1} + \text{Gumbel}(1/\epsilon)$.
- Sort noisy counts $\{\tilde{h}_1, \cdots, \tilde{h}_k, \tilde{h}_1\}$ and release at most k indices with counts larger than \tilde{h}_1 in sorted order.

Pay-what-you-get Composition
- Note that Algorithm 2 can return fewer than k elements.
- It turns out that despite asking for a top-k query, the privacy loss need only increase by the amount of elements that are returned (plus 1).
- Given an overall privacy loss budget of k^{*} many indices that can be returned, an analyst can continue asking top-k queries until k^{*} many indices have been returned.
- Analysis follows from stringing together adaptively chosen exponential mechanisms with privacy parameter ϵ.
- Need to also account for how many top-k queries are asked ℓ^{*}, not just the total number of indices returned. This impacts the total δ.
- With each top-k query we update the privacy budget as $k^{*} \leftarrow k^{*} - (\# \text{ of outputs} + 1)$
- $\ell^{*} \leftarrow \ell^{*} - 1$
- Continue until either k^{*} is 0 or ℓ^{*} is 0.
- The full system of top-k queries is $(\epsilon^{*}, \ell^{*}\delta)$-DP where $\epsilon^{*} \approx \epsilon \sqrt{k^{*}} \log(1/\delta)$

Improved Composition with Bounded Range Mechanisms
- Exp. mechanisms satisfy a stronger condition than DP.
- A mechanism $M : X \rightarrow Y$ is ϵ-bounded range (BR) if for any neighbors $x, x' \in X$ and outcome pairs $y, y' \in \mathbb{Y}$,
\[
\Pr[M(x) = y] \leq e^{\epsilon} \Pr[M(x') = y']
\]
- ϵ-BR \implies ϵ-DP and ϵ-DP \implies 2ϵ-BR.
- Leads to more than 50% improvement in overall privacy loss compared to the optimal DP composition.

References

[LQSC] Li, Qardaji, Su, and Cao. Privbasis: Frequent itemset mining with DP. PVLDB'12.

[MT] McSherry and Talwar. Mechanism design via DP.

[ZNC] Zeng, Naughton, and Cai. On DP frequent itemset mining. VLDB'12.