NOTES ON DEFORMATION QUANTIZATION

SHILIN YU

Abstract. ...

Contents

1. Deformation theory 1
 1.1. Deformation of associative algebras 1
 1.2. Hochschild complex and dg-Lie algebra 2
 1.3. Deformation quantization of Poisson manifolds 5
2. Kontsevich’s formality theorem 8

1. Deformation theory

1.1. Deformation of associative algebras. Fix a field \(k \) of characteristic zero. Let \(A \) be an associative algebra. A formal deformation of \(A \) is an associative \(k \)-algebra structure on \(A \) such that \(A \approx A/J/\hbar K \) as algebras. We denote the multiplication on \(A/J/\hbar K \) by the star product \(\star : A/J/\hbar K \times A/J/\hbar K \to A/J/\hbar K \), then it is determined by its values on the subspace \(A \subset A/J/\hbar K \). We write for any \(f, g \in A \),

\[
f \star g = fg + B_1(f, g)\hbar + B_2(f, g)\hbar^2 + \cdots + B_n(f, g)\hbar^n + \cdots. \tag{1}
\]

where \(B_n : A \otimes A \to A \).

Let \(J \) be the group of \(k \)-module automorphisms \(E \) of \(A/J/\hbar K \), such that

\[
E(f) \equiv f \mod tA/J/\hbar K,
\]
i.e., \(E \) is of the form

\[
E(f) = f + E_1(f)\hbar + E_2(f)\hbar^2 + \cdots, \quad E_i \in \text{Hom}_k(A, A).
\]

Key words and phrases. ...
Then J acts on the set of all formal deformations. Any $E \in J$ transforms a star product \ast to \ast' via

$$f \ast' g = E(E^{-1}(f) \ast E^{-1}(g)).$$

(2)

In this case, we say that star and \ast' are gauge equivalent. We want to classify formal deformations of A up to gauge equivalences.

Let us first look at the first-order deformations of A, i.e., $\mathbb{k}[[h]]$-algebra structures on $A[[h]]/(h) = A \oplus h \cdot A$. If we expand the associativity condition $(f \ast g) \ast h = f \ast (g \ast h)$ according to (1) and compare the coefficient of the first-order term, we get

$$B_1(fg,h) + B_1(f,g)h = fB_1(g,h) + B_1(f,gh),$$

(3)

or equivalently,

$$fB_1(g,h) - B_1(fg,h) + B_1(f,gh) - B_1(f,g)h = 0.$$

(4)

This means that $B_1 : A \otimes A \to A$ is a Hochschild 2-cocycle. Now suppose there is a gauge transform $E = \text{Id}_A + hE_1$ on B_1, which maps a star product \ast with first coefficient B_1 to \ast' with first coefficient B'_1. Then we have

$$B'_1(f,g) = B_1(f,g) - fE_1(g) + E_1(fg) - E_1(f)g.$$

(5)

Hence B'_1 differs from B_1 with a Hochschild 2-coboundary.

Theorem 1.1. The set of gauge equivalence classes of first-order deformation of an associative algebra A is bijective to the second Hochschild cohomology $HH^2(A,A)$.

1.2. Hochschild complex and dg-Lie algebra. Let A be as before. The Hochschild cochain complex $C^\bullet(A,A)$ is defined to be

$$C^n(A,A) := \text{Hom}_k(A^\otimes_n, A)$$

with the differential $b : C^n(A,A) \to C^{n+1}(A,A)$ given by

$$b\phi(a_1, a_2, \cdots, a_{n+1}) = a_1 \phi(a_2, \cdots, a_{n+1}) + \sum_{i=1}^{n} (-1)^i \phi(a_1, \cdots, a_i a_{i+1}, \cdots, a_{n+1}) + (-1)^{n+1} \phi(a_1, \cdots, a_n a_{n+1},$$

for any $\phi \in C^n(A,A)$. The cohomology of $(C^\bullet(A,A),b)$ is the Hochschild cohomology $HH^\bullet(A,A)$ of the algebra A.

Now suppose we have a formal deformation $(A[[h]], \ast)$ of A. Denote by $\mu : A \otimes A \to A$ the original multiplication of A and by $\mu_h : A[[h]] \otimes_k A[[h]] \to A[[h]]$ the star product. We will
rewrite the associativity condition of μ_h in terms of a DGLA structure on the Hochschild complex $(C^*(A, A), b)$. Let ϕ be a Hochschild p-cochain and φ be a Hochschild q-cochain. The Gerstenhaber product of ϕ and φ is the $(p + q - 1)$-cochain defined by

$$\phi \circ \varphi(a_1, \cdots, a_{p+q-1}) = \sum_{i=0}^{p-1} (-1)^i (q+1) \phi(a_1, \cdots, a_i, \varphi(a_{i+1}, \cdots, a_{i+q}), a_{i+q+1}, \cdots, a_{p+q-1}).$$

The Gerstenhaber bracket is then defined by

$$[\phi, \varphi] = \phi \circ \varphi - (-1)^{(p-1)(q-1)} \varphi \circ \phi$$

Definition 1.2. A differential graded Lie algebra (DGLA) is a complex (L^\bullet, d) endowed with a Lie bracket $[\ , \] : L^\bullet \otimes L^\bullet \to L^\bullet$ of degree 0 which is

- antisymmetric: $[x, y] = (-1)^{|x||y|} [y, x]$,
- Jacobi identity: $[x, [y, z]] = [[x, y], z] + (-1)^{|x||y|} [y, [x, z]]$,
- compatibility: $d[x, y] = [dx, y] + (-1)^{|x||y|} [x, dy]$.

Lemma 1.3. The shifted Hochschild complex $C^*(A, A)[1] = C^{*+1}(A, A)$ with the Gerstenhaber bracket is a DGLA.

Note that the differential b can be rewritten in terms of the Gerstenhaber bracket and the multiplication μ:

$$d\phi = \pm [\mu, \phi]$$

We can form $C^\bullet(A, A)[[h]]$, the Hochschild complex depending formally on h, and extend the differential b and the Gerstenhaber bracket into a $k[[h]]$-linear one on the new complex, so that it is again a DGLA. Regard μ_h as an element in $C^2(A, A)[[h]]$, then we have

$$[\mu_h, \mu_h](f, g, h) = 2(\mu_h(\mu_h(f, g), h) - \mu_h(f, \mu_h(g, h))) = 0$$

since μ_h is associative. Thus we have

$$[\mu_h, \mu_h] = 0 \in C^3(A, A)[[h]].$$

(6)
If we write
\[\mu_h(f,g) = fg + B(f,g), \quad \text{or} \quad \mu_h = \mu + B, \quad B \in C^2(A,A) \otimes \mathfrak{m}, \]
where \(\mathfrak{m} = \hbar k[[\hbar]] \) is the maximal ideal of \(k[[\hbar]] \), then (6) can be rewritten as the *Maurer-Cartan equation*
\[bB + \frac{1}{2}[B,B] = 0, \quad (7) \]
and we say that \(B \in C^1(A,A)[1] \otimes \mathfrak{m} \) is a *Maurer-Cartan element* of the DGLA \(L_A^\bullet = C^\bullet(A,A)[1] \otimes \mathfrak{m} \) (which is a subDGLA of \(C^\bullet(A,A)[1] \otimes k[[\hbar]] \)). On the other hand, notice that the gauge action (2) on the set of \(\mu_h \)'s is the exponential of the action of the pronilpotent Lie algebra \(L_A^0 = C^1(A,A) \otimes (\hbar) \) given by
\[\rho_X(\mu_h) = [X,\mu + B] = [X,B] - bX \in L_A^1, \quad X \in L_A^0. \quad (8) \]
Thus we arrive at the following general definition.

Definition 1.4. Let \((L^\bullet,d) \) be a (nilpotent/pronilpotent) DGLA. The set of all Maurer-Cartan elements of \(L^\bullet \) is defined to be
\[MC(L^\bullet) = \{ x \in L^1|dx + \frac{1}{2}[x,x] = 0 \}. \]
The gauge action of \(\exp L^0 \) on \(MC(L^\bullet) \) is the affine action on \(L^1 \) whose differential is the Lie algebra homomorphism
\[L^0 \rightarrow \text{Lie(Aff}(L^1)), \quad X \mapsto (x \mapsto [X,x] - dX). \]
The set of formal deformations governed by \(L^\bullet \) over the formal disk \(\text{Spf} k[[\hbar]] \) is
\[\text{Def}_L(k[[\hbar]]) := MC(L^\bullet \otimes \mathfrak{m})/ \exp(L^0 \otimes \mathfrak{m}). \]
Note that if \(f : L^1_1 \rightarrow L^1_2 \) is a homomorphism of DGLAs, then it induces map \(\text{Def}_{L_1} \rightarrow \text{Def}_{L_2} \).

1.3. **Deformation quantization of Poisson manifolds.** Our primary interest is in the deformation of the algebra of smooth functions \(A = C^\infty(M) \) (which is commutative!) on a smooth manifold with extra structures. For this purpose, the usual Hochschild complex \(C^\bullet(A,A) \) is too big. Instead, we use a subcomplex \(D^\bullet_{\text{poly}} \) of the shifted Hochschild complex \(C^\bullet(A,A)[1] \), which consists of those cochains that are polydifferential operators. For
instance, a cochain in D^n_{poly} under some local coordinates (x_i) is of the form

$$f_0 \otimes \cdots \otimes f_n \mapsto \sum_{I_0, \cdots, I_n} C^{I_0, \cdots, I_n}(x) \cdot \partial_{I_0}(f_0) \cdots \partial_{I_n}(f_n).$$

The corresponding cohomology groups will be referred as the Hochschild cohomology $HH^\bullet(A, A)$.

This means that in the expansion of the star product (1), we require B_n to be polydifferential operators. Suppose there is a formal deformation of $C^\infty(M)$ with a star product \star, we define a Poisson bracket on $C^\infty(M)$ by

$$\{f, g\} = \frac{f \star g - g \star f}{2\hbar} = \frac{1}{2}(B_1(f, g) - B_1(g, f)) = B_1^-(f, g), \quad \forall f, g \in C^\infty(M).$$

where $B_1^-(f, g)$ is the antisymmetric part of B_1. Notice that the gauge action (5) only changes the symmetric part of B_1. In fact, the symmetric part of B_1 can always be eliminated by a gauge transform. So from now on let us assume B_1 is antisymmetric. The Poisson bracket acts as derivations in both parameters, i.e.,

$$\{f, gh\} = \{f, g\}h + g\{f, h\},$$

and it satisfies the Jacobi identity

$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0.$$

To see this, we take the commutators of the star product

$$[f, g] = f \star g - g \star f$$

$$= \hbar(B_1(f, g) - B_1(g, f)) + \hbar^2[B_2(f, g) - B_2(g, f)] + O(\hbar^3)$$

$$= \hbar^2B_1(f, g) + \hbar^2[B_2(f, g) - B_2(g, f)] + O(\hbar^3),$$

so

$$[f, g] \star h = \hbar^2B_1(f, g)h + \hbar^2((B_2(f, g) - B_2(g, f))h + 2B_1(B_1(f, g), h)) + O(\hbar^3),$$

and

$$h \star [f, g] = \hbar^2hB_1(f, g) + \hbar^2(h(B_2(f, g) - B_2(g, f)) + 2B_1(h, B_1(f, g))) + O(\hbar^3).$$

Hence

$$[[f, g], h] = \hbar^24B_1(B_1(f, g), h) + O(\hbar^3) = \hbar^24\{f, g\}, h\} + O(\hbar^3),$$

and the Jacobi identity for the Poisson bracket comes from the \hbar^2 term of the Jacobi identity for the commutator of \star. We rephrase the Poisson bracket as a bivector field $\alpha \in \Gamma(\wedge^2TM)$,
such that \(\langle \alpha, df \otimes dg \rangle = B^{-1}(f, g) = \{f, g\} \). Then the Jacobi identity can be written as
\[[\alpha, \alpha]_{SN} = 0. \]
The bracket \([,]_{SN}\) here is the Schouten-Nijenhuis bracket which will be introduced in due course.

In other words, we have bijections between the set of Poisson structures, the second Hochschild cohomology \(HH^2(A, A) \) and the gauge equivalence classes of all first-order deformations.

Questions 1.5. Given a Poisson structure on \(M \), can it always be lifted to a formal deformation of \(C^\infty(M) \)?

Example 1.6 (The Moyal-Weyl quantization). Let us start with the special case when the manifold is \(V = \mathbb{R}^2 = \{(p, q)\} \) equipped with the symplectic form \(\omega = 2dp \wedge dq \). The corresponding Poisson bivector is \(\alpha = 2\partial_p \wedge \partial_q \). The poisson bracket on \(C^\infty(V) \) is given by

\[
\{f, g\} = \frac{\partial f}{\partial x_p} \frac{\partial g}{\partial x_q} - \frac{\partial f}{\partial x_q} \frac{\partial g}{\partial x_p}.
\]

A relevant noncommutative algebra here is the Weyl algebra

\[A_\hbar = \mathbb{R}(p, q)\mathbb{[}\hbar]/\langle pq - qp - 2\hbar \rangle. \]
We show that it is a deformation of the algebra \(\mathbb{R}[V] = S(V^*) \) of polynomial functions over \(V \). There is a \(\mathbb{R}[\hbar] \)-linear symmetrization map

\[Sym : \mathbb{R}[V]\mathbb{[}\hbar] \rightarrow A_\hbar \]
given by

\[Sym(v_1v_2 \cdots v_n) = \frac{1}{n!} \sum_\sigma [v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}] \in A_\hbar. \]
By some filtration argument one can see that this is a isomorphism of \(\mathbb{R}[\hbar] \)-modules. Thus we can define a star product on \(\mathbb{R}[V] \) by

\[f \star g = Sym^{-1}(Sym(f) \cdot Sym(g)). \]

On the other hand, as a subalgebra of \(C^\infty(V) \), \(\mathbb{R}[V] \) is invariant under the Poisson bracket. We show that the first-order term of the expansion of the star product on \(\mathbb{R}[V] \) is equal to the Poisson bracket, i.e.,

\[
\left. \frac{f \star g - g \star f}{2\hbar} \right|_{\hbar=0} = \{f, g\}, \quad \forall f, g \in \mathbb{R}[V]. \quad (9)
\]
Notice that both sides of (9) are derivations with respect to \(f, g \) and the usual commutative product of functions. Thus we only need to check the special case when \(f(p, q) = p \) and \(g(p, q) = q \). Indeed, in \(A_\hbar \) we have

\[
\text{Sym}(p \star q - q \star p) = p \otimes q - q \otimes p = 2\hbar,
\]

thus

\[
p \star q - q \star p = 2\hbar = 2\hbar\{p, q\}.
\]

One can show that the coefficients \(B_n \) in the expansion of the star product are differential operators in \(f \) and \(g \), so we can use this expansion to extend the star product to \(C^\infty(V) \), which is the Moyal-Weyl product. It is given by the formula

\[
f \star g = \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left(\frac{\partial}{\partial p'} \frac{\partial}{\partial q'} - \frac{\partial}{\partial q'} \frac{\partial}{\partial p'} \right)^n f(p', q') g(p'', q'') \bigg|_{p' = p'' = p, q' = q'' = q}
\]

where \(\mu \) is the usual commutative product of functions. To see it, let us consider the star product of \(f(p, q) = e^{ap + bq} \) and \(g(p, q) = e^{cp + dq} \), where \(a, b, c \) and \(d \) are arbitrary real numbers. We write \(x = ap + bq \) and \(y = cp + dq \). Then the commutator \(\{x, y\} = 2\hbar(ad - bc) \) (with respect to \(\star \)) is a central element in \(C^\infty(V) \) and all higher iterations of the commutator vanish. By Campbell-Baker-Hausdorff theorem, we have

\[
e^x \star e^y = e^{x+y + \frac{1}{2}\{x, y\}} = e^{\frac{1}{2}\{x, y\}} e^{x+y} = e^{\hbar(ad - bc)} fg.
\]

Hence

\[
f \star g = \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} (ad - bc)^n fg
\]

More generally, let \(M = \mathbb{R}^d \) and \(\alpha = \sum_{i,j} \alpha^{i,j} \partial_i \wedge \partial_j \) is a Poisson bivector with constant coefficients, where \(\alpha^{i,j} = -\alpha^{j,i} \). The corresponding Poisson bracket is given by

\[
\{f, g\} = \langle \alpha, df \otimes dg \rangle = \sum_{i,j} \alpha^{i,j} \partial_i f \partial_j g.
\]
The Moyal-Weyl product is given by the formula

\[f \ast g = fg + \hbar \sum_{i,j} \alpha^{i,j} \partial_i(f) \partial_j(g) + \frac{\hbar^2}{2} \alpha^{i,j} \alpha^{k,l} \partial_i \partial_k(f) \partial_j \partial_l(g) + \cdots \]

\[= \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \sum_{i_1, \ldots, i_n} \prod_{k=1}^{n} \alpha^{i_k j_k} \left(\prod_{k=1}^{n} \partial_{i_k} \right)(f) \cdot \left(\prod_{k=1}^{n} \partial_{j_k} \right)(g) \]

\[= \mu \circ e^{\hbar \alpha} \circ (f \otimes g). \]

2. Kontsevich’s formality theorem

We have seen that \(H^1(D^\bullet_{\text{poly}}) = HH^2(A,A) \) is isomorphic to \(\wedge^2 TM \). In fact, there is a more general result due to Hochschild-Kostant-Rosenberg, of which a variation used by Kontsevich is as follows. Let

\[T^m_{\text{poly}} = \Gamma(M, \wedge^{n+1} TM), \quad n \geq -1. \]

Then we can define a map of cochain complexes

\[I_{\text{HKR}} : (T^\bullet_{\text{poly}}, 0) \to (D^\bullet_{\text{poly}}, b) \]

by

\[I_{\text{HKR}}(\xi_0 \wedge \cdots \wedge \xi_n) = \left(f_0 \otimes \cdots \otimes f_n \mapsto \frac{1}{(n+1)!} \sum_{\sigma} \text{sgn}(\sigma) \prod_{i=0}^{n} \xi_{\sigma(i)}(f_i) \right). \]

Theorem 2.1 (HKR). Then \(I_{\text{HKR}} \) is a quasi-isomorphism between complexes.

Since \(D^\bullet_{\text{poly}} \) is a DGLA, its cohomology group \(T^\bullet_{\text{poly}} \) admits a graded Lie algebra structure, which is given by the Schouten-Nijenhuis bracket:

\[[\xi_0 \wedge \cdots \wedge \xi_k, \eta_0 \wedge \cdots \wedge \eta_l]_{SN} = \sum_{i=0}^{k} \sum_{j=0}^{l} (-1)^{i+j+k+1} [\xi_i, \eta_j] \wedge \xi_0 \wedge \cdots \wedge \xi_k \wedge \eta_0 \wedge \cdots \wedge \eta_l. \]

for \(k, l \geq 0 \). For \(k \geq 0 \),

\[[\xi_0 \wedge \cdots \wedge \xi_k, h]_{SN} = \sum_{i=0}^{k} (-1)^i \xi_i(h) \cdot \xi_0 \wedge \cdots \wedge \xi_i \wedge \cdots \wedge \xi_k. \]

It is tempting to say that \(I_{\text{HKR}} \) is a homomorphism of DGLAs, then we can map a Maurer-Cartan element of \(T^\bullet_{\text{poly}} \hat{\otimes} \mathfrak{m} \), which is a Poisson bivector \(\alpha \), to a Maurer-Cartan element of \(D^\bullet_{\text{poly}} \hat{\otimes} \mathfrak{m} \), which is a formal deformation of \(C^\infty(M) \), and hence prove answer the Question 1.5! Unfortunately it is not the case... but Kontsevich showed that \(I_{\text{HKR}} \) can be
fixed by an L_{∞}-morphism, which gives bijection between deformations arising from the two DGLAs.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA