Spring 2012 - P13

13. Find the volume of the solid generated by revolving the region bounded by the graphs of \(y = x^2 \) and \(y = 1 \) around the \(x \)-axis.

\[\int_0^1 (1 - x^2) \, dx \]

A) \(\frac{8}{5} \pi \) B) \(\frac{1}{5} \pi^2 \) C) \(\frac{4}{5} \pi \) D) \(2 \pi \) E) \(\frac{14}{15} \pi \) F) \(\frac{16}{5} \pi \)

Fall 2012 - P3

3. The region of the \(xy \)-plane bounded by \(y = (x - 1)^\frac{1}{2} \) and the \(x \)-axis for \(1 \leq x \leq 2 \) is rotated about the \(x \)-axis. The volume of the resulting solid of revolution is:

(a) \(\frac{2}{3} \pi \) (b) \(\frac{1}{2} \pi \) (c) \(\frac{3}{2} \) (d) \(2 \pi \) (e) \(\frac{5}{3} \) (f) \(4 \)

Spring 2011 - P2

2. A pyramid with a square base lies on the \(x,y \)-plane, with the vertices of its base at the points \((1,1),(1,-1),(-1,1),(-1,-1)\). The height of the pyramid is 2, and the vertex of the pyramid lies directly over the origin of the \(x,y \)-plane. What is the volume of the pyramid?

(a) 2 (b) 3 (c) 5/2 (d) 8/3 (e) 11/4 (f) 18/5

Fall 2010 - P3

3. Find the volume of the solid obtained by rotating the region bounded by the \(x \)-axis, the line \(y = 1 \), the curve \(y = \ln(x) \), and the line \(x = 1/2 \) about the \(y \)-axis.

(A) \(\pi(e - 2) \) (B) \(2\pi \left(\frac{e^2}{4} - \frac{3}{4} \right) \) (C) \(2\pi \left(\frac{e^2}{4} + \frac{3}{4} \right) \) (D) \(\pi \left(\frac{1}{2}e^2 - \frac{3}{4} \right) \)

(E) \(\frac{\pi}{8}(4e^2 - 3 - 2\ln 2) \) (F) \(\pi \left(e - \frac{3}{2} \right) \) (G) \(\frac{e\pi}{2} \) (H) \(\pi \left(\frac{3}{4} + \frac{e^2}{2} - e \right) \)
The base of a solid is a semi-circular disk \(\{ (x, y) \mid x^2 + y^2 \leq 1, x \geq 0 \} \). Cross sections perpendicular to the \(x \)-axis are squares with their vertices on the semi-circle. Compute the volume of the solid.

\[
\begin{align*}
\text{a)} & \quad \frac{8}{3} \\
\text{b)} & \quad \pi^2 \\
\text{c)} & \quad \frac{2\pi}{3} \\
\text{d)} & \quad \frac{\pi^2}{4} \\
\text{e)} & \quad 1 \\
\text{f)} & \quad 4
\end{align*}
\]

Fall 2008 - P2

The volume of the solid generated by revolving the region bounded by the curves \(x = y^2 \) and \(y = x - 2 \) about the \(y \)-axis

\[
\begin{align*}
\text{a)} & \quad \frac{20\pi}{3} \\
\text{b)} & \quad \frac{72\pi}{5} \\
\text{c)} & \quad \frac{42\pi}{5} \\
\text{d)} & \quad \frac{13\pi}{2} \\
\text{e)} & \quad \frac{32\pi}{5} \\
\text{f)} & \quad \frac{212\pi}{15}
\end{align*}
\]