
Homework 1 Solutions

For the problems themselves, see Dr. Pop’s website.

1 (a) Associativity of ∆:

(A∆B)∆C = (((A \B) ∪ (B \A)) \ C) ∪ (C \ ((A \B) ∪ (B \A)))
= ((A \B) \ C) ∪ ((B \A) \ C) ∪ (C \ ((A \B) ∪ (B \A)))

Now, (A \B) \C = A \ (B ∪C), and so this becomes (A \ (B ∪C))∪
(B \ (A∪C))∪ (C \ ((A \B)∪ (B \A))). Also, C \ (A∆B) is equal to
the set of elements of C which are not in precisely one of A or B, and
so C \ (A∆B) is equal to C \ (A ∪B) union with A ∩B ∩ C. Thus,
(A∆B)∆C = (A\(B∪C))∪(B\(A∪C))∪(C \(A∪B))∪(A∩B∩C).
Working backwards, but changing the roles of the three sets, we
obtain (A∆B)∆C.
Identity of ∆: We need a set such that A∆x = A for all A. That is,
that (A \ x) ∪ (x \ A) = A. If x = ∅, then A \ ∅ = A and ∅ \ A = ∅,
so their union is A.
Commutativity of ∆: A∆B = (A \B)∪ (B \A), and as ∪ is commu-
tative, this is (B \A) ∪ (A \B) = B∆A.
Associativity of ·: (A · B) · C) = (A ∩ B) ∩ C = A ∩ (B ∩ C) by the
associativity of intersection, and so we have A · (B · C).
Identity of ·: We need a set such that A · x = A for all A. That is,
A∩x = A. So, in particular, A ⊂ x for all A. The only option, then,
is x = X. And then, A ∩X does, in fact, equal A for all A.
Commutativity of ·:

(b) To show that it is a ring, we must still prove that ∆ has inverses and
that A · (B∆C) = A · B∆A · C. So see that ∆ has inverses, we just
look at A∆A = (A \ A) ∪ (A \ A) = ∅. Seeing distributivity is a bit
harder, we start with A · (B∆C). This is equal to A∩ (B \C∪C \B).
As a lemma, we prove that A ∩ (B \ C) = A ∩ B \ (A ∩ C). Let
x ∈ A ∩ (B \ C). Then x ∈ A and x ∈ B \ C. So x ∈ A and x ∈ B
and x /∈ C. Similarly, let x ∈ A∩B \ (A∩C). Then x ∈ (A∩B) and
x /∈ (A ∩C). So x ∈ A and x ∈ B and x /∈ A ∩C. As x ∈ A already,
x /∈ A ∩ C if and only if x /∈ C, and so the two conditions are both
x ∈ A, x ∈ B and x /∈ C. Thus, the lemma is proved.
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Now, we have A ∩ (B \ C ∪ C \ B). As ∩ distributes over ∪, we
have A ∩ (B \ C) ∪ A ∩ (C \ B). This is equal to, by the lemma,
A∩B\(A∩C)∪(A∩C)\(A∩B) = (A ·B)\(A ·C)∪(A ·C)\(A ·B) =
(A ·B)∆(A · C).

(c) Fix A ∈ P(X). Then A ·A = A ∩A = A.

2 Let x, y ∈ R. Note that (x + x)2 = x2 + 2x2 + x2 = 4x2, but, because R
is boolean, we also have that (x + x)2 = x + x = 2x and x2 = x, thus,
4x = 2x, and so 2x = 0, which implies that x = −x for all elements
of R. Now look at (x + y)2 = x + y. The left hand side expands to
x2 + xy + yx+ y2, and as R is boolean, we have x+ xy + yx+ y = x+ y,
and so xy + yx = 0. thus, xy = −yx = yx, and so R is commutative.

4 (a) Let A,B be finite and nonempty. Then, A × B = {(a, b)|a ∈ A, b ∈
B}. It will be finite, as there are only finitely many possibilities to go
into the coordinate a and also only finitely many for b. Conversely,
assume that A×B is finite. Then there are natural functions A×B →
A and A × B → B given by (a, b) 7→ a and (a, b) 7→ b. These are
both surjective, by definition, and so A and B must be finite, as no
finite set can surject onto an infinite set. This does not hold if A or
B is empty. For instance, A = ∅, B = Z, then A× B = ∅, and so is
finite, but is a product of an infinite set and a finite (empty) set.

(b) Let A and B be finite. If either is empty, then A × B is, and so
|A × B| = |A||B| = 0. So we may assume that they are nonempty.
Then A is in bijection with {1, . . . , n} and B with {0, . . . ,m}, so we
label the elements A = {a1, . . . , an} and B = {b1, . . . , bm}. Now,
the product is A × B = {(a, b)|a ∈ A, b ∈ B}, and we can label
(ai, bj) = cij . So then A × B = {cij |i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.
Thus, there are nm possibilities for cij , and so |A×B| = nm = |A||B|.

(c) First we see that |X| ≤ |P(X)|. This is because there is always an
injection a 7→ {a} from X to P(X). All that remains is to show
that this inequalitiy is strict. Assume that it isn’t, that is, that there
exists a bijection f : X → P(X). Then there is a set in the image
defined by B = {x ∈ X|x /∈ f(x)}. As f is a bijection, and hence
surjective, there exists x0 ∈ X such that f(x0) = B. Now, if x0 ∈ B,
then x0 ∈ f(x0), but that contradicts the definition of B, that is that
x /∈ f(x0). Similarly, if x0 /∈ B, then x0 /∈ f(x0), and so x0 must
be in B, another contradiction. Thus, assuming the existence of a
bijection leads to a contradiction, so one must not exist, and so the
statemnet is proved.

7 (a) As ∗ is associative on M , it must be on G. So we must check that G
has a neutral element, inverses, and is closed under ∗. The neutral
element is in G, as e ∗ e = e, and so it has an inverse. Similarly, if
x ∈ G then x−1 ∈ G, as x is an inverse for x−1. All that remains
is closure. Let x, y ∈ G, we must show xy ∈ G. That amounts to
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providing an inverse. An inverse for xy is y−1x−1, and so G is closed
under ∗, and so is a group.

(b) Let x′ ∈ M . It has left inverse x ∈ M . Similarly, x has left inverse
x′′. So xx′ = e and x′′x = e. So we look at (x′′x)x′ = x′, but as M
is associative, (x′′x)x′ = x′′(xx′) = x′′ and so x′ = x′′, and so x has
a two-sided inverse.

(c) Here we must classify all groups of order less than or equal to seven.

m=1 The only group of order one is the trivial group.
m=2 By Fermat’s Little Theorem (Corollary 4 and 5 on page 44 of

Herstein), any group of prime order is a cyclic group. Thus, the
only group of order 2 is C2.

m=3 Similar to m = 2, we have the only group being C3.
m=4 Here is the first interesting case. As m = 4 it is not prime. Now,

the order of any element must be a divisor of four, so we get
two cases. If there exists an element of order four, then we have
C4. So now let us assume that there is no element of order 4.
Then every element other than the identity must be of order 2.
So we can posit the existence of two elements of order two, a
and b, which give the group the description as {e, a, b, ab}. Now,
the group must be abelian, because ba cannot be the identity, as
then ab = e as well, nor can ab = a or ab = b, as then b = e
or a = e, so this group is abelian. The whole multiplication is
determined, then, and so the group is C2 × C2.

m=5 As before, we have C5

m=6 Here we have the only other nonprime number. First we look
at the case where there is an element of order 6. Then G ∼= C6,
and so we can assume that there are no elements of order six.
By Cauchy’s Theorem (2.11.4 on page 87), there exist elements
a of order 3 and b of order two. The group can be described,
as a set, by {e, a, a2, b, ab, a2b}. The claim is that this uniquely
determines the multiplication table. To check this, we will de-
rive the rows. The first row is left multiplication of elements
by e, which is just the identity. The second is left multiplica-
tion by a, which is also dictated by the form of the elements
and the fact that a3 = e. Similarly for the third row, left
multiplication by a2. The only products left to determine are
ba, ba2, bab, ba2b, aba, aba2, abab, aba2b, a2ba, a2ba2, a2bab, a2ba2b.
Now, abab and a2ba2b are really (ab)2 and (a2b)2, which must be
the identity. This is because ab and a2b must be of order two,
as if there were two distinct elements a, b of order three, without
a2 = b, then the group would have order at least nine. Now, as
abab = e, we right multiply by b to obtain aba = b, and left mul-
tiply by a2 to get ba = a2b. Now, with ba = a2b in hand, we have
that ba2 = a2ba = a2(a2b) = ab, that bab = (a2b)b = a2, that
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ba2b = (ab)b = a, aba2 = a(ba)a = a(a2b)a = a3ba = ba = a2b,
aba2b = a(ba)ab = a(a2b)(ab) = bab = a2, a2ba = a2(a2b) = ab,
a2ba2 = aba = b, and finally that a2bab = a2(a2b)b = a4b2 = a,
forcing the whole multiplication table. So there is a unique non-
abelian group of order six, and it must by S3, with an isomor-
phism obtained by a 7→ (123) and b 7→ (12).

m=7 As before, we have C7.

(d) As σ5 = (134) is of order three, we can cube both sides to obtain
σ15 = e. Thus, σ has order dividing 15, and must be 1,3,5 or 15.
Now, it can’t be 1, as then σ = e, and it can’t be 5 or 15, as no
element of S4 has either of those orders (nor any order greater than
4), and so σ3 = e. Thus, σ5 = σ2σ3 = σ2 = (134). As σ is order
three, σ2 = σ−1, and so there is a unique permutation whose fifth
power is (134), and it is the inverse of (134), which is (143). Now for
τ2 = (1432), we note that this has order four. So we take each side
to the fourth power to obtain τ8 = e. Then τ has order 1,2,4 or 8. It
cannot be 1, as then τ = e, nor 2, as then τ2 = e 6= (1432), nor can
it be 8, as no elements have order 8. Thus, τ must have order four.
However, if τ has order four, then τ2 has order two, and so τ cannot
have order 4 either. There is no allowable order, and thus no such τ
can exist.

8 (a) We rewrite the system of linear equations as an equation of matrices(
a 1
1 a

) (
x
y

)
=

(
b
c

)
. Thus, the condition is that

(
a 1
1 a

)
has an inverse over our ring R. Now, if there is an inverse, we can

write it as 1
a2−1

(
a −1
−1 a

)
, and so the condition is that a2 − 1

has to be invertible, as everything else always makes sense. Thus,
a2 − 1 must be in the list 5,7,11,13,17,19,23,25,29,31,35 which are
invertible (because they are relatively prime to 36. And so, a2 must
be in the list 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36 = 0. So now we must
merely determine which of these are squares modulo 36. The list of
squares is 1, 4, 9, 16, 25, 0, 13, 28. The only number on both lists is 0.
So a2 = 0. Thus, a is on the list 0, 6, 12, 18, 24, 30, as all square to
zero, modulo 36.

(b) Here, however, every element other than 0 is coprime to 37 and so is
invertible, thus a2 − 1 6= 0, and so a2 6= 1, so a 6= ±1, thus, we just
need a 6= 1, 36 in order to have a unique solution.

(c) The difference between the two cases is that 37 is a prime number,
and so Z/37Z is a field, whereas Z/36Z is not, and has a lot of
noninvertible elements and zerodivisors.
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