Homework 10 Solutions

1. (a) We will show that Φ is a homomorphism, injective, and surjective. To see that it is a homomorphism, let $a, b \in R$ and $\phi, \psi \in \operatorname{hom}(M, N)$. We want to show that $\Phi(a \phi+b \psi)=a \Phi(\phi)+b \Phi(\psi)$. Let $f \in N^{*}$. Then

$$
\begin{aligned}
\Phi(a \phi+b \psi)(f) & =(a \phi+b \psi)^{*}(f) \\
& =f \circ(a \phi+b \psi) \\
& =f \circ(a \phi)+f \circ(b \psi) \\
& =a(f \circ \phi)+b(f \circ \psi) \\
& =a \phi^{*}(f)+b \psi^{*}(f) \\
& =a \Phi(\phi)(f)+b \Phi(\psi)(f)
\end{aligned}
$$

as desired.
For isomorphism, we look at part b to show that Φ is transpose, and and then problem 2 to see that transpose is an isomorphism.
(b) Let $\phi: M \rightarrow N$ be a homomorphism, and let A_{ϕ} the matrix representing it. That is, the matrix with entries $a_{i j}$ so that $\phi\left(\alpha_{i}\right)=$ $\sum_{j=1}^{n} a_{i j} \beta_{j}$. The matrix of ϕ^{*} has elements $b_{k l}$ given by $\phi^{*}\left(\beta_{k}^{*}\right)=$ $\sum_{l=1}^{m} b_{k l} \alpha_{l}^{*}$. The latter is $\beta_{k}^{*} \circ \phi$, and we apply this to α_{i} and obtain $\beta_{k}^{*}\left(\phi\left(\alpha_{i}\right)\right)=\beta_{k}^{*}\left(\sum_{j=1}^{n} a_{i j} \beta_{j}\right)=a_{i k}$. But similarly, it is $\phi^{*}\left(\beta_{k}^{*}\right)\left(\alpha_{i}\right)=$ $\sum_{l=1}^{m} b_{k l} \alpha_{l}^{*}\left(\alpha_{i}\right)=b_{k} i$. And so $a_{i k}=b_{k i}$, so $A_{\phi^{*}}=A_{\phi}^{\tau}$.
2. (a) We must show homomorphism, injective, and surjective. To see that it is a homomorphism, let A, B be $n \times m$ matrices, and let $\alpha, \beta \in R$. We want to show that $(\alpha A+\beta B)^{\tau}=\alpha A^{\tau}+\beta B^{\tau}$. We do this be noting that the matrix elements of $a A+b B$ are $\alpha a_{i j}+\beta b_{i j}$, and the transpose has $\alpha a_{j i}+\beta b_{j i}$. The Similarly, for $\alpha A^{\tau}+\beta B^{\tau}$, we have $\alpha a_{j i}+\beta b_{j i}$, and so the two are equal. For injectivity and surjectivity, we will show that transpose is its own inverse. Let A be a matrix with elements $a_{i j}$. Then its transpose is a matrix with elemetns $a_{j i}$, and its transpose is $a_{i j}$ again. Thus, $A^{\tau \tau}=A$, and so transpose is its own inverse, and so must be an isomorphism.
(b) We have shown it to be a module isomorphism. All that remains is to show that $(A B)^{\tau}=B^{\tau} A^{\tau}$. Let A and B be matrices with elements $a_{i j}$ and $b_{i j}$. Then $A B$ has matrix elements $\sum_{k=1}^{m} a_{i k} b_{k j}$.

The transpose is $\sum_{k=1}^{m} a_{j k} b_{k i}$, so these are the matrix elements of $(A B)^{\tau}$. For A^{τ} and B^{τ}, we have elements $a_{j i}$ and $b_{j i}$. Multiplying together we get $\sum_{k=1}^{m} a_{j k} b_{k i}$, as desired.
3. (a) If A is a matrix with elements $a_{i j}, \operatorname{tr}(A)=\sum_{i=1}^{m} a_{i i}$. So, if A, B are arbitrary matrices with elements $a_{i j}$ and $b_{i j}$, and $r \in R$, then $A+B$ has elements $a_{i j}+b_{i j}$, and so $\operatorname{tr}(A+B)=\sum_{i=1}^{m} a_{i i}+b_{i i}=$ $\operatorname{tr}(A)+\operatorname{tr}(B)$, and $r A$ has elements $r a_{i j}$, so $\operatorname{tr}(r A)=\sum_{i=1}^{m} r a_{i i}=$ $r \sum_{i=1}^{m} a_{i i}=r \operatorname{tr}(A)$.
(b) False. Let I be the 2×2 identity matrix. Then $\operatorname{tr}(I * I)=\operatorname{tr}(I)=2$, but $\operatorname{tr}(I) \operatorname{tr}(I)=2 * 2=4$.
(c) Let A be an arbitrary matrix with elements $a_{i j}$. Then $\operatorname{tr}(A)=$ $\sum_{i=1}^{m} a_{i i}=\sum_{j=1}^{m} a_{j j}=\operatorname{tr}\left(A^{\tau}\right)$.
(d) Let A, B be matrices with elements $a_{i j}, b_{i j}$. Then $A B$ has elements $\sum_{k=1}^{m} a_{i k} b_{k j}$, and $B A$ has elements $\sum_{k=1}^{m} b_{i k} a_{k j}$. Taking traces, we have $\operatorname{tr}(A B)=\sum_{i=1}^{m} \sum_{k=1}^{m} a_{i k} b_{k i}$, and $\operatorname{tr}(B A)=\sum_{i=1}^{m} \sum_{k=1}^{m} b_{i k} a_{k i}$. These are equal by relabeling the indices.
(e) Let $S \in G L_{m}(R)$ and A be a matrix. Then $\operatorname{tr}\left(S A S^{-1}\right)=\operatorname{tr}\left(S\left(A S^{-1}\right)\right)$. By the previous part, this is equal to $\operatorname{tr}\left(\left(A S^{-1}\right) S\right)=\operatorname{tr}\left(A S S^{-1}\right)=$ $\operatorname{tr}(A)$.
(f) False. The invertible matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ has trace zero.
4. For this problem, we must merely check these things for $P_{A}(X)$, because $P_{\phi}(X)$ is defined to be $P_{A}(x)$ for some A representing ϕ.
(a) We proceed by induction. As $P_{A}(X)=\operatorname{det}(X I-A)$, for a 1×1 matrix $A=(a)$, this is $x-a$, a degree 1 polynomial. Now, assume that the result holds for matrices of size less than $k \times k$, and let A be a $k \times k$ matrix, $A_{i j}$ the minor obtained by deleting the i th row and j th column, and $\Delta_{i j}$ the similar minor of $X I-A$. Then, $P_{A}(X)=\left(X-a_{11}\right) \operatorname{det}\left(X I-A_{11}\right)+\sum_{i=2}^{k}(-1)^{i+1} a_{1 i} \Delta_{1 i}$. Now, $\Delta_{1 i}$ is of degree less than or equal to $k-2$, because it has had two of the $x-a_{j j}$ terms removed. By induction hypothesis, $\operatorname{det}\left(X I-A_{11}\right)$ is monic of degree $k-1$, and so $\left(x-a_{11}\right) \operatorname{det}\left(X I-A_{11}\right)$ is monic of degree k.
(b) Obtaining a_{0} is simple. We have $P_{A}(0)=a_{0}$, and, as $P_{A}(X)=$ $\operatorname{det}(X I-A)$, this means that $a_{0}=P_{A}(0)=\operatorname{det}(0 I-A)=\operatorname{det}(-A)$. To obtain a_{m-1}, we use induction. For a 1×1 matrix, it can be seen to be $-\operatorname{tr}(A)$. We assume that this holds for matrices up to $m \times m$. Now, from before, we know that $P_{A}(X)=\left(X-a_{11}\right) \operatorname{det}(X I-$ $\left.A_{11}\right)+\sum_{i=1}^{m}(-1)^{i+1} a_{1 i} \Delta_{1 i}$. However, none of these tail terms contribute to a_{m-1}, as their degree is too low. It is the a_{m-1} term of $\left(X-a_{11}\right) \operatorname{det}\left(X I-A_{11}\right)$. By induction hypothesis, $\operatorname{det}\left(X I-A_{11}\right)$ leads with $X^{m-1}-\operatorname{tr}\left(A_{11}\right) X^{m-2}$. Multiplying through, we get that $a_{m-1}=-a_{11}-\operatorname{tr}\left(A_{11}\right)=-\operatorname{tr}(A)$, as desired.
(c) Let A be a matrix. Then $P_{A}(X)=\operatorname{det}(X I-A)=\operatorname{det}(X I-A)^{\tau}=$ $\operatorname{det}\left(X I^{\tau}-A^{\tau}\right)=\operatorname{det}\left(X I-A^{\tau}\right)=P_{A^{\tau}}(X)$.
(d) Let S invertible and A arbitrary. Then $P_{S A S^{-1}}(X)=\operatorname{det}(X I-$ $\left.S A S^{-1}\right)=\operatorname{det}\left(X S I S^{-1}-S A S^{-1}\right)=\operatorname{det}\left(S(X I-A) S^{-1}\right)=\operatorname{det}(X I-$ $A)=P_{A}(X)$.
5. (a) The characteristic polynomial is $x^{4}-1$, and so we get four eigenvalues, $1,-1, i,-i$ with corresponding eigenvectors

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
i \\
-i \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-i \\
i \\
1
\end{array}\right)
$$

when working over a field where -1 has square roots $\pm i$. If -1 is not square, then there are only two eigenvalues and eigenvectors.
(b) The characteristic polynomial is $x^{4}-16 x^{3}+90 x^{2}-216 x+189=$ $(x-3)^{3}(x-7)$. So it has four eigenvalues, $3,3,3,7$, with eigenvectors

$$
\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

which works over any field at all.
(c) For this one, the formulas are very complicated, and can be obtained by careful calculation and application of the cubic formula.

