Homework 10 Solutions

1. (a) We will show that Φ is a homomorphism, injective, and surjective. To see that it is a homomorphism, let $a, b \in R$ and $\phi, \psi \in \text{hom}(M, N)$. We want to show that $\Phi(a\phi + b\psi) = a\Phi(\phi) + b\Phi(\psi)$. Let $f \in N^*$. Then

$$\Phi(a\phi + b\psi)(f) = (a\phi + b\psi)^*(f)$$

$$= f \circ (a\phi + b\psi)$$

$$= f \circ (a\phi) + f \circ (b\psi)$$

$$= a(f \circ \phi) + b(f \circ \psi)$$

$$= a\phi^*(f) + b\psi^*(f)$$

$$= a\Phi(\phi)(f) + b\Phi(\psi)(f)$$

as desired.

For isomorphism, we look at part b to show that Φ is transpose, and and then problem 2 to see that transpose is an isomorphism.

- (b) Let $\phi: M \to N$ be a homomorphism, and let A_{ϕ} the matrix representing it. That is, the matrix with entries a_{ij} so that $\phi(\alpha_i) = \sum_{j=1}^{n} a_{ij}\beta_j$. The matrix of ϕ^* has elements b_{kl} given by $\phi^*(\beta_k^*) = \sum_{l=1}^{m} b_{kl}\alpha_l^*$. The latter is $\beta_k^* \circ \phi$, and we apply this to α_i and obtain $\beta_k^*(\phi(\alpha_i)) = \beta_k^*(\sum_{j=1}^{n} a_{ij}\beta_j) = a_{ik}$. But similarly, it is $\phi^*(\beta_k^*)(\alpha_i) = \sum_{l=1}^{m} b_{kl}\alpha_l^*(\alpha_i) = b_ki$. And so $a_{ik} = b_{ki}$, so $A_{\phi^*} = A_{\phi}^{\tau}$.
- 2. (a) We must show homomorphism, injective, and surjective. To see that it is a homomorphism, let A, B be $n \times m$ matrices, and let $\alpha, \beta \in R$. We want to show that $(\alpha A + \beta B)^{\tau} = \alpha A^{\tau} + \beta B^{\tau}$. We do this be noting that the matrix elements of aA + bB are $\alpha a_{ij} + \beta b_{ij}$, and the transpose has $\alpha a_{ji} + \beta b_{ji}$. The Similarly, for $\alpha A^{\tau} + \beta B^{\tau}$, we have $\alpha a_{ji} + \beta b_{ji}$, and so the two are equal. For injectivity and surjectivity, we will show that transpose is its own inverse. Let A be a matrix with elements a_{ij} . Then its transpose is a matrix with elemeths a_{ji} , and its transpose is a_{ij} again. Thus, $A^{\tau\tau} = A$, and so transpose is its own inverse, and so must be an isomorphism.
 - (b) We have shown it to be a module isomorphism. All that remains is to show that $(AB)^{\tau} = B^{\tau}A^{\tau}$. Let A and B be matrices with elements a_{ij} and b_{ij} . Then AB has matrix elements $\sum_{k=1}^{m} a_{ik}b_{kj}$.

The transpose is $\sum_{k=1}^{m} a_{jk} b_{ki}$, so these are the matrix elements of $(AB)^{\tau}$. For A^{τ} and B^{τ} , we have elements a_{ji} and b_{ji} . Multiplying together we get $\sum_{k=1}^{m} a_{jk} b_{ki}$, as desired.

- 3. (a) If A is a matrix with elements a_{ij} , $\operatorname{tr}(A) = \sum_{i=1}^{m} a_{ii}$. So, if A, B are arbitrary matrices with elements a_{ij} and b_{ij} , and $r \in R$, then A + B has elements $a_{ij} + b_{ij}$, and so $\operatorname{tr}(A + B) = \sum_{i=1}^{m} a_{ii} + b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B)$, and rA has elements ra_{ij} , so $\operatorname{tr}(rA) = \sum_{i=1}^{m} ra_{ii} = r \sum_{i=1}^{m} a_{ii} = r \operatorname{tr}(A)$.
 - (b) False. Let I be the 2×2 identity matrix. Then tr(I * I) = tr(I) = 2, but tr(I) tr(I) = 2 * 2 = 4.
 - (c) Let A be an arbitrary matrix with elements a_{ij} . Then $tr(A) = \sum_{i=1}^{m} a_{ii} = \sum_{j=1}^{m} a_{jj} = tr(A^{\tau})$.
 - (d) Let A, B be matrices with elements a_{ij}, b_{ij} . Then AB has elements $\sum_{k=1}^{m} a_{ik}b_{kj}$, and BA has elements $\sum_{k=1}^{m} b_{ik}a_{kj}$. Taking traces, we have $\operatorname{tr}(AB) = \sum_{i=1}^{m} \sum_{k=1}^{m} a_{ik}b_{ki}$, and $\operatorname{tr}(BA) = \sum_{i=1}^{m} \sum_{k=1}^{m} b_{ik}a_{ki}$. These are equal by relabeling the indices.
 - (e) Let $S \in GL_m(R)$ and A be a matrix. Then $tr(SAS^{-1}) = tr(S(AS^{-1}))$. By the previous part, this is equal to $tr((AS^{-1})S) = tr(ASS^{-1}) = tr(A)$.
 - (f) False. The invertible matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ has trace zero.
- 4. For this problem, we must merely check these things for $P_A(X)$, because $P_{\phi}(X)$ is defined to be $P_A(x)$ for some A representing ϕ .
 - (a) We proceed by induction. As $P_A(X) = \det(XI A)$, for a 1×1 matrix A = (a), this is x a, a degree 1 polynomial. Now, assume that the result holds for matrices of size less than $k \times k$, and let A be a $k \times k$ matrix, A_{ij} the minor obtained by deleting the *i*th row and *j*th column, and Δ_{ij} the similar minor of XI A. Then, $P_A(X) = (X a_{11}) \det(XI A_{11}) + \sum_{i=2}^k (-1)^{i+1} a_{1i} \Delta_{1i}$. Now, Δ_{1i} is of degree less than or equal to k 2, because it has had two of the $x a_{jj}$ terms removed. By induction hypothesis, $\det(XI A_{11})$ is monic of degree k 1, and so $(x a_{11}) \det(XI A_{11})$ is monic of degree k.
 - (b) Obtaining a_0 is simple. We have $P_A(0) = a_0$, and, as $P_A(X) = \det(XI A)$, this means that $a_0 = P_A(0) = \det(0I A) = \det(-A)$. To obtain a_{m-1} , we use induction. For a 1×1 matrix, it can be seen to be $-\operatorname{tr}(A)$. We assume that this holds for matrices up to $m \times m$. Now, from before, we know that $P_A(X) = (X - a_{11}) \det(XI - A_{11}) + \sum_{i=1}^{m} (-1)^{i+1} a_{1i} \Delta_{1i}$. However, none of these tail terms contribute to a_{m-1} , as their degree is too low. It is the a_{m-1} term of $(X - a_{11}) \det(XI - A_{11})$. By induction hypothesis, $\det(XI - A_{11})$ leads with $X^{m-1} - \operatorname{tr}(A_{11})X^{m-2}$. Multiplying through, we get that $a_{m-1} = -a_{11} - \operatorname{tr}(A_{11}) = -\operatorname{tr}(A)$, as desired.

- (c) Let A be a matrix. Then $P_A(X) = \det(XI A) = \det(XI A)^{\tau} = \det(XI^{\tau} A^{\tau}) = \det(XI A^{\tau}) = P_{A^{\tau}}(X).$
- (d) Let S invertible and A arbitrary. Then $P_{SAS^{-1}}(X) = \det(XI SAS^{-1}) = \det(XSIS^{-1} SAS^{-1}) = \det(S(XI A)S^{-1}) = \det(XI A) = P_A(X).$
- 5. (a) The characteristic polynomial is x^4-1 , and so we get four eigenvalues, 1, -1, i, -i with corresponding eigenvectors

$$\left(\begin{array}{c}1\\1\\1\\1\end{array}\right), \left(\begin{array}{c}1\\-1\\-1\\1\end{array}\right), \left(\begin{array}{c}1\\i\\-i\\-1\end{array}\right), \left(\begin{array}{c}1\\-i\\i\\1\end{array}\right), \left(\begin{array}{c}1\\-i\\i\\1\end{array}\right)$$

when working over a field where -1 has square roots $\pm i$. If -1 is not square, then there are only two eigenvalues and eigenvectors.

(b) The characteristic polynomial is $x^4 - 16x^3 + 90x^2 - 216x + 189 = (x-3)^3(x-7)$. So it has four eigenvalues, 3, 3, 3, 7, with eigenvectors

$$\left(\begin{array}{c}-1\\1\\0\\0\end{array}\right), \left(\begin{array}{c}-1\\0\\1\\0\end{array}\right), \left(\begin{array}{c}-1\\0\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\1\\1\end{array}\right)$$

which works over any field at all.

(c) For this one, the formulas are very complicated, and can be obtained by careful calculation and application of the cubic formula.