Homework 11 Solutions

3 (a) See Homework 10. This matrix is diagonalizable if and only if $x^{2}+1$ factors over the field.
(b) The characteristic polynomial is $(x-3)^{2}\left(x^{2}+(-6-a) x+6 a-3\right)$, and so the matrix is diagonalizable if and only if $x^{2}-(6+a) x+6 a-3$ factors over the field. The solution to $x^{2}+(-6-a) x+6 a-3=$ 0 are $x=\frac{a+6 \pm \sqrt{(a+6)^{2}-4(6 a-3)}}{2}$. The quantity under the root is $(a+6)^{2}-24 a+12=a^{2}+12 a+36-24 a+12=a^{2}-12 a+48$. So this matrix is diagonalizable if and only if $a^{2}-12 a+48$ is a square.
(c) The characteristic polynomial is $x^{3}+\left(-a^{2}-4\right) x^{2}+\left(4 a^{2}-9 a-3\right) x+$ $\left(-a^{2}+5 a-6\right)$. The matrix is diagonalizable if the field contains all three roots, which can be obtained via the cubic formula.

4 (a) Subtracting the first from the second twice, gives the system $x+$ $y+z=0$ and $y+(a-2) z=1$, so $y=1-(a-2) z$. Plugging this into the first equation gives $x+1-(a-2) z+z=0$, which gives $x+1+(2-a) z+z=0$, which is $x+1+(3-a) z=0$, and so $x=-1+(a-3) z$. Thus, the solutions to the system are $(-1+(a-3) z, 1-(a-2) z, z)$ for all $z \in R$.
(b) This is an inhomogeneous system of four equations in three unknowns. Thus, it is only solvable if the matrix $\left(\begin{array}{cccc}a & 1 & 0 & c \\ 1 & a & 0 & c \\ 1 & b & 0 & d \\ 1 & 1 & 1 & d\end{array}\right)$ is singular. That is, one of the equation is a linear combination of the others. This will happen only if the determinant of this matrix is zero. So the system is solvable iff the elements a, b, c, d satisfy $a b c-a d+a c-b c-c+d$.

4 (a) Set $x=\sqrt{2}+\sqrt{3}$. Then $x^{2}=(\sqrt{2}+\sqrt{3})^{2}=2+3+2 \sqrt{6}=5+2 \sqrt{6}$, $x^{3}=(\sqrt{2}+\sqrt{3})(5+2 \sqrt{6})=5 \sqrt{2}+5 \sqrt{3}+4 \sqrt{2}+6 \sqrt{3}=9 \sqrt{2}+11 \sqrt{3}$, and $x^{4}=(5+2 \sqrt{6})^{2}=25+24+10 \sqrt{6}=49+10 \sqrt{6}$. So we look at $x^{4}-10 x=-1$, and so find that $\sqrt{2}+\sqrt{3}$ satisfies $x^{4}-10 x^{2}+1$.
(b) The previous part bounds the degree by 4 . As it isn't in \mathbb{Q}, it has degree at least one. So we must merely eliminate the possibility of 2 or 3. Assume it is of degree 2 . Then it satisfies an equation of the form $a x^{2}+b x+c=a(5+2 \sqrt{6})+b(\sqrt{2}+\sqrt{3})+c=0$. The only
solution to this is zero, because we must have $b=0$, because nothing can cancel the $\sqrt{2}$, and then $a=0$ for the $\sqrt{6}$, adn this implies $c=0$. Similarly, for a cubic, we have $a x^{3}+b x^{2}+c x+d=0$, which is $a(9 \sqrt{2}+11 \sqrt{3})+b(5+2 \sqrt{6})+c(\sqrt{2}+\sqrt{3})+d=0$. This breaks up to $9 a+c=0,11 a+c=0,5 b+d=0$ and $2 b=0$. So $b=0$, which implies $d=0$, and the system $9 a+c=0$ and $11 a+c=0$ tells us that $a=c=0$.
(c) The degree of $\sqrt{2} \sqrt{3}=\sqrt{6}$ is two. It is not 1 , as $\sqrt{6}$ is not rational, and it satisfies $x^{2}-6$.

8 As b satisfies an equation of degree m over F, it must satisfy the same equation over $F(a)$, and so $F(a, b)$ is of degree at most $m n$ over F. So $[F(a, b): F] \leq m n$. Now, by the Corollary on 209, we have that $[F(a): F]$ and $[F(b): F]$ divide $[F(a, b): F]$. So we have a number which is less than or equal to $m n$ and divisible by m and n, which are relatively prime. The only possible such number is $m n$, and so $[F(a, b): F]=m n$.

9 (a) As $(F,+)$ is a finite abelian group, there exists a number $n \in \mathbb{N}$ such that for all $a \in F, n a=0$. Let p be the smallest such number. We claim that p is prime. This is because if it is not, then $p=a b$, and for all $x \in F$, we have $p x=a b x=0$, and so $a(b x)=0$, which means that $a, b x$ are zero divisors, because p was the smallest number such that $p x=0$ for all $x \in F$. But F, being a field, has no zero divisors, which gives us a contradiction, so p is prime.
(b) Now, F contains as a subfield $\mathbb{Z} / p \mathbb{Z}$, the field consisting of all integer multiples of the identity. Thus, F is a \mathbb{Z}_{p}-vector space. As F is finite, it is finite dimensional, of dimension n. Thus, we have an isomorphism $F \cong \mathbb{Z}_{p}^{n}$. Isomorphisms are bijections, and so we have $q=|F|=\left|\mathbb{Z}_{p}^{n}\right|=\left|\mathbb{Z}_{p}\right|^{n}=p^{n}$, as desired.
(c) The multiplicative group of F has order $q^{n}-1$, and so for all $a \in F^{\times}$, we have $a^{q^{n}-1}=1$. Multiplying both sides by a, we obtain $a^{q^{n}}=a$ for all $a \in F$.
(d) As K is algebraic over F, it is a finite-dimensional F-vector space. So $K \cong F^{m}$, and so we have $|K|=q^{m}$. Then the same argument from the previous part establishes that $b^{q^{m}}=b$ in K.

