Homework 2 Solutions

1 (a) By definition, for all $x \in G,\left(x^{-1}\right)^{-1} x^{-1}=e=x x^{-1}$. We then right multiply by x, and obtain $\left(x^{-1}\right)^{-1}\left(x^{-1} x\right)=x\left(x^{-1} x\right)$, and so $\left(x^{-1}\right)^{-1}=x$. We will proceed by induction to show that $(x y)^{n}=$ $x^{n} y^{n}$. Let $x, y \in G$. For $n=1$, the result is $(x y)^{1}=x^{1} y^{1}$, which is $x y=x y$, which holds. Now assume that $(x y)^{n}=x^{n} y^{n}$ and look at $(x y)^{n+1}$. We can factor $(x y)^{n+1}=(x y)^{n} x y$, and then by hypothesis we have $(x y)^{n+1}=x^{n} y^{n} x y$. As G is abelian, we have that $y^{n} x=x y^{n}$, and so $(x y)^{n+1}=x^{n}\left(x y^{n}\right) y=x^{n+1} y^{n+1}$., and so G abelian implies that $(x y)^{n}=x^{n} y^{n}$ for all n.
(b) We proceed by induction. Let $x_{1} \in G$. Then $\left(x_{1}\right)^{-1}=x_{1}^{-1}$. Now let $x_{1}, \ldots, x_{n} \in G$ and assume that $\left(x_{1} \ldots x_{n-1}\right)^{-1}=x_{n-1}^{-1} \ldots x_{1}^{-1}$. Then look at $x_{n}^{-1} x_{n-1}^{-1} \ldots x_{1}^{-1}$. Multiply this by $x_{1} \ldots x_{n}$ and we obtain $\left(x_{1} \ldots x_{n}\right)\left(x_{n}^{-1} \ldots x_{1}^{-1}\right)=\left(x_{1} \ldots x_{n-1}\right)\left(x_{n} x_{n}^{-1}\right)\left(x_{n-1}^{-1} \ldots x_{1}^{-1}\right)=$ $\left(x_{1} \ldots x_{n-1}\right)\left(x_{n-1}^{-1} \ldots x_{1}^{-1}\right)=\left(x_{1} \ldots x_{n-1}\right)\left(x_{1} \ldots x_{n-1}\right)^{-1}=e$. Similarly for left multiplication, and so $\left(x_{1} \ldots x_{n}\right)^{-1}=x_{n}^{-1} \ldots x_{1}^{-1}$.
(c) Let $x, y \in G$ arbitrary and assume $(x y)^{2}=x^{2} y^{2}$. Then we expand and obtain $x y x y=x x y y$. We then left multiply by x^{-1} and right multiply by y^{-1} and obtain $x^{-1} x y x y y^{-1}=x^{-1} x x y y y^{-1}$ and so $y x=$ $x y$, and so $x, y \in G$ commute. As x, y arbitrary, G is abelian.
(d) Let $x, y \in G$ arbitrary and let i be such that $(x y)^{i}=x^{i} y^{i},(x y)^{i+1}=$ $x^{i+1} y^{i+1}$ and $(x y)^{i+2}=x^{i+2} y^{i+2}$. We expant $(x y)^{i+1}=(x y)^{i}(x y)$, and by the first condition, we have $x^{i+1} y^{i+1}=(x y)^{i+1}=x^{i} y^{i} x y$, we then left multiply by x^{-i} and y^{-1} to obtain $x y^{i}=y^{i} x$. Now we look at $(x y)^{i+2}=x^{i+2} y^{i+2}$. The left is $(x y)^{i+2}=(x y)^{i+1}(x y)=$ $x^{i+1} y^{i+1} x y=x^{i+2} y^{i+2}$. We then left multiply by x^{-i-1} and right multiply to y^{-1}, and obtain $y^{i+1} x=x y^{i+1}$. This can be expanded to $y y^{i} x=x y^{i} y$. We apply $x y^{i}=y^{i} x$ and obtain $y y^{i} x=y^{i} x y$, and then left multiply by y^{-i}, to finally obtain $y x=x y$, and so G is abelian.

2 (a) In cycle notation, take $\sigma=(123)$ and $\tau=(12)$. Then $\sigma^{2}=(132)$, $\tau^{2}=e$ and $\sigma \tau=(123)(12)=(13)$, so $(\sigma \tau)^{2}=e$. Thus, $\sigma^{2} \tau^{2}=$ $(132) \neq e=(\sigma \tau)^{2}$.
(b) Let G be a finite group. Each element $g \in G$ defines an integer, $o(g)$, the order of g. Let $n_{G}=L C M(o(g) \mid g \in G)$. This is defined, because it is the least common multiple of finitely many numbers.

Additionally, as each $o(g) \mid n_{G}$, we have $g^{n_{G}}=e$ for all $g \in G$, and so the claim is proved.
(c) For $G=\mathbb{Z} / m \mathbb{Z}$, every element has order dividing m, and one element has order m. Thus, m is the least common multiple. For $G=S_{3}$, the elements have order 1,2 or 3 , and so the least common multiple is $n_{G}=6$. The story is slightly more complex in the case of $G=S_{7}$. The elements of this group all have order $1,2,3,4,5,6$ or 7 , and the least common multiple is 420 , which is a sufficient n_{G} for S_{7}.
(d) In general, n_{G} will always divide G, because, as defined, it is the least common multiple of the orders of the elements, but we know that $o(g) \mid G$ for all $g \in G$, and so G is a common multiple of the $o(g)$.

5 (a) Let $x, y, z \in R^{\times}$. As R is associative under multiplication, we have $(x y) z=x(y z)$, and so R^{\times}is as well. Additinally, $1_{R} \in R^{\times}$, as $1_{R} \cdot 1_{R}=1_{R}$, and so R^{\times}has an identity. As $x x^{-1}=x^{-1} x=1_{R}$, whenever x is a unit, x^{-1} is as well, so R^{\times}has inverses. The only question is whether R^{\times}is closed under multiplication. So we must show that if x, y are units then $x y$ is. Now, as x, y are units, y^{-1}, x^{-1} are, and so $(x y)\left(y^{-1} x^{-1}\right)=1_{R}$, and so $x y \in R^{\times}$.
(b) First, look at $R=\mathbb{Z}$. For this ring, $R^{\times}=\{1,-1\}$. That $1,-1$ are units follows from $1 \cdot 1=(-1) \cdot(-1)=1$. To see that they are the only ones, let $n \in \mathbb{Z}$. For n to be a unit, then there must be an integer m such that $n m=1$. We note that $\mathbb{Z} \subset \mathbb{Q}$, and is in fact a subring, so if n has inverse m in \mathbb{Z}, it does in \mathbb{Q}. So we can write $m=\frac{1}{n} \in \mathbb{Q}$. Now, for any integer other than $-1,1$, we have $\frac{1}{n} \in \mathbb{Q}$ but $\frac{1}{n} \notin \mathbb{Z}$, and so the only invertible elements of \mathbb{Z} are $\{1,-1\}$. For $R=\mathbb{Q}$, we have $R^{\times}=\mathbb{Q} \backslash\{0\}$, because if $\frac{a}{b} \in \mathbb{Q}$ is nonzero, then $\frac{b}{a} \in \mathbb{Q}$, and $\frac{a}{b} \frac{b}{a}=1$. For $R=\mathcal{M}_{2 \times 2}(\mathbb{R})$, we have R^{\times}equal to the set of matrices A with $\operatorname{det} A \in \mathbb{R} \backslash\{0\}$. This is because if $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}$, if it exists, is equal to $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, and the condition is then that $a d-b c=\operatorname{det} A$ is invertible, and over \mathbb{R}, every nonzero element is invertible. Similarly, for $R=\mathcal{M}_{2 \times 2}(\mathbb{Z})$, we need $a d-b c \in\{1,-1\}$.
(c) If $a, b \in R^{\times}, c \in R$, then the equation $a x b=c$ has a unique solution, $x=a^{-1} c b^{-1}$. If either a or b isn't in R^{\times}, then there may be no solutions, for instance, $1 \cdot x \cdot 2=3$ in \mathbb{Z} has no solutions.

6 (a) Let $a, b, c \in \mathbb{H}_{R}$. We then write $a=a_{0}+a_{1} i+a_{2} j+a_{3} k$, and similarly for b and c. So $(a+b)+c=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+\right.$ $\left.b_{3}\right) k+\left(c_{0}+c_{1} i+c_{2} j+c_{3} k\right)=\left(a_{0}+b_{0}+c_{0}\right)+\ldots+\left(a_{3}+b_{3}+c_{3}\right) k=$ $a_{0}+\left(b_{0}+c_{0}\right)+\ldots+a_{3}+\left(b_{3}+c_{3}\right) k=a+(b+c)$, because R is associative under + . Similarly, $a+b=\left(a_{0}+b_{0}\right)+\ldots+\left(a_{3}+b_{3}\right) k=$ $\left(b_{0}+a_{0}+\ldots+\left(b_{3}+a_{3}\right) k=b+a\right.$ as R is commutative under + . To see that it has an additive identity, we look at $0=0+0 i+0 j+0 k$,
and note that $a+0=\left(a_{0}+0\right)+\ldots+\left(a_{3}+0\right) k=a_{0}+\ldots+a_{3} k=a$, and to see inverses, let $-a=-a_{0}+\ldots+\left(-a_{3}\right) k$, and then $a+(-a)=$ $\left(a_{0}-a_{0}\right)+\ldots+\left(a_{3}-a_{3}\right) k=0+\ldots+0 k=0$. Now we must show associativity of multiplication. Look at $(a b) c$. This expands to $\left(\left(a_{0}+\right.\right.$ $\left.\left.a_{1} i+a_{2} j+a_{3} k\right)\left(b_{0}+b_{1} i+b_{2} j+b_{3} j\right)\right)\left(c_{0}+c_{1} i+c_{2} j+c_{3} k\right)$, this expands to $\left(\left(a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}\right)+\left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}-a_{3} b_{2}\right) i+\left(a_{0} b_{2}-\right.\right.$ $\left.\left.a_{1} b_{3}+a_{2} b_{0}+a_{3} b_{1}\right) j+\left(a_{0} b_{3}+a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{0}\right) k\right)\left(c_{0}+c_{1} i+c_{2} j+c_{3} k\right)$. This, in turn, is equal to $\left(a_{0} b_{0} c_{0}-a_{1} b_{1} c_{0}-a_{2} b_{2} c_{0}-a_{3} b_{3} c_{0}-a_{1} b_{0} c_{1}-\right.$ $a_{0} b_{1} c_{1}+a_{3} b_{2} c_{1}-a_{2} b_{3} c_{1}-a_{2} b_{0} c_{2}-a_{3} b_{1} c_{2}-a_{0} b_{2} c_{2}+a_{1} b_{3} c_{2}-a_{3} b_{0} c_{3}+$ $\left.a_{2} b_{1} c_{3}-a_{1} b_{2} c_{3}-a_{0} b_{3} c_{3}\right)+\left(a_{1} b_{0} c_{0}+a_{0} b_{1} c_{0}-a_{3} b_{2} c_{0}+a_{2} b_{3} c_{0}+a_{0} b_{0} c_{1}-\right.$ $a_{1} b_{1} c_{1}-a_{2} b_{2} c_{1}-a_{3} b_{3} c_{1}-a_{3} b_{0} c_{2}+a_{2} b_{1} c_{2}-a_{1} b_{2} c_{2}-a_{0} b_{3} c_{2}+a_{2} b_{0} c_{3}+$ $\left.a_{3} b_{1} c_{3}+a_{0} b_{2} c_{3}-a_{1} b_{3} c_{3}\right) i+\left(a_{2} b_{0} c_{0}+a_{3} b_{1} c_{0}+a_{0} b_{2} c_{0}-a_{1} b_{3} c_{0}+a_{3} b_{0} c_{1}-\right.$ $a_{2} b_{1} c_{1}+a_{1} b_{2} c_{1}+a_{0} b_{3} c_{1}+a_{0} b_{0} c_{2}-a_{1} b_{1} c_{2}-a_{2} b_{2} c_{2}-a_{3} b_{3} c_{2}-a_{1} b_{0} c_{3}-$ $\left.a_{0} b_{1} c_{3}+a_{3} b_{2} c_{3}-a_{2} b_{3} c_{3}\right) j+\left(a_{3} b_{0} c_{0}-a_{2} b_{1} c_{0}+a_{1} b_{2} c_{0}+a_{0} b_{3} c_{0}-\right.$ $a_{2} b_{0} c_{1}-a_{3} b_{1} c_{1}-a_{0} b_{2} c_{1}+a_{1} b_{3} c_{1}+a_{1} b_{0} c_{2}+a_{0} b_{1} c_{2}-a_{3} b_{2} c_{2}+a_{2} b_{3} c_{2}+$ $\left.a_{0} b_{0} c_{3}-a_{1} b_{1} c_{3}-a_{2} b_{2} c_{3}-a_{3} b_{3} c_{3}\right) k$. A similar multiplication procedure on $a(b c)$ gives the same thing, and so \mathbb{H}_{R} is associative. As $i j=k$ and $j i=-k$, we can see immediately that \mathbb{H}_{R} is noncommutative, and now we look at the identity. Let $1=1_{R}+0 i+0 j+0 k$. Then $a 1=\left(a_{0} 1_{R}-a_{1} 0-a_{2} 0-a_{3} 0\right)+\left(a_{0} 0+a_{1} 1_{R}+a_{2} 0-a_{3} 0\right) i+\left(a_{0} 0-\right.$ $\left.a_{1} 0+a_{2} 1+R+a_{3} 0\right) j+\left(a_{0} 0+a_{1} 0-a_{2} 0+a_{3} 1_{R}\right) k=a=1 a$, and so is the identity for \mathbb{H}_{R}.
We must now show that the function $\phi: R \rightarrow \mathbb{H}_{R}$ by $a \mapsto a+$ $0 i+0 j+0 k$ is a homomorphism of rings with identity. We begin by checking $\phi(a+b)=(a+b)+0 i+0 j+0 k=(a+0 i+0 j+$ $0 k)+(b+0 i+0 j+0 k)=\phi(a)+\phi(b)$. We must next work on $\phi(a) \phi(b)=(a+0 i+0 j+0 k)(b+0 i+0 j+0 k)=(a b-0-0-0)+(0+$ $0+0-0) i+(0-0+0+0) j+(0+0-0+0) k=a b+0 i+0 j+0 k=\phi(a b)$. All that remains now is to check that $\phi\left(1_{R}\right)=1_{\mathbb{H}_{R}}$, which holds because $\phi\left(1_{R}\right)=1_{R}+0 i+0 j+0 k=1_{\mathbb{H}_{R}}$ as determined above.
(b) To see that $\mathbb{H}_{\mathbb{R}}$ is a skew field, the only thing that remains is to check the existence of inverses. Let $a=a_{0}+a_{1} i+a_{2} j+a_{3} k$, and define $\bar{a}=a_{0}-a_{1} i-a_{2} j-a_{3} k$. Now that $a \bar{a}=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+0 i+0 j+0 k$ is invertible if it is nonzero, as it is the image of a real number, and is zero if and only if $a=0$. So we can look at $\bar{a}(a \bar{a})^{-1}$, and this will be an inverse for a, as $a\left(\bar{a}(a \bar{a})^{-1}\right)=(a \bar{a})(a \bar{a})^{-1}=1_{\mathbb{H}_{\mathbb{R}}}$, so $\mathbb{H}_{\mathbb{R}}$ is a skew field. We now solve the equation $(1+i+j+k) x=x i$ for x. Set $x=x_{0}+x_{1} i+x_{2} j+x_{3} k$, then we have $(1+i+j+k)\left(x_{0}+\right.$ $\left.x_{1} i+x_{2} j+x_{3} k\right)=\left(x_{0}+x_{1} i+x_{2} j+x_{3} k\right) i$. The right hand side simplifies to $x_{0} i-x_{1}-x_{2} k+x_{3} j$, and the left hand side simplifies to $\left(x_{0}-x_{1}-x_{2}-x_{3}\right)+\left(x_{1}+x_{0}+x_{3}-x_{2}\right) i+\left(x_{2}-x_{3}+x_{0}+x_{1}\right) j+$ $\left(x_{3}+x_{2}-x_{1}+x_{0}\right) k$. Setting these equal, we end up with four linear equations over \mathbb{R} in the variables $x_{0}, x_{1}, x_{2}, x_{3}$, which are

$$
\begin{aligned}
x_{0}-x_{1}-x_{2}-x_{3} & =-x_{1} \\
x_{1}+x_{0}+x_{3}-x_{2} & =x_{0} \\
x_{2}-x_{3}+x_{0}+x_{1} & =x_{3} \\
x_{3}+x_{2}-x_{1}+x_{0} & =-x_{2}
\end{aligned}
$$

These give unique solution 0 .
(c) Here we must show that the map $\mathbb{C} \rightarrow \mathbb{H}_{\mathbb{R}}$ given by $(a+b i) \mapsto$ $(a+b i+0 j+0 k)$ is a ring homomorphism. First we check additivity, set $z, w \in \mathbb{C}$ and write $z=z_{0}+z_{1} i, w=w_{0}+w_{1} i, \phi(z+w)=$ $\phi\left(\left(z_{0}+w_{0}\right)+\left(z_{1}+w_{1}\right) i\right)=\left(z_{0}+w_{0}\right)+\left(z_{1}+w_{1}\right) i+0 j+0 k=\left(z_{0}+\right.$ $\left.z_{1} i+0 j+0 k\right)+\left(w_{0}+w_{1} i+0 j+0 k\right)=\phi(z)+\phi(w)$. Now we must check that it respects multiplication $\phi(z) \phi(w)=\left(z_{0} w_{0}-z_{1} w_{1}-0-0\right)+$ $\left.\left(z_{0} w_{1}+z_{1} w_{0}+0-\right)\right) i+(0-0+0+0) j+(0+0-0+0) k=\left(z_{0} w_{0}-z_{1} w_{1}\right)+$ $\left(z_{0} w_{1}+z_{1} w_{0}\right) i+0 j+0 k=\phi\left(z_{0} w_{0}-z_{1} w_{1}+\left(z_{0} w_{1}+z_{1} w_{0}\right) i\right)=\phi(z w)$.

8 We want to show that there are no ideals other than zero and the whole ring for $R=\mathcal{M}_{2 \times 2}(\mathbb{Q})$. Let I be an ideal, and assume $I \neq \emptyset$. Then there exists $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that at least one of a, b, c, d is nonzero. We note that since I is an ideal, $B A+A C \in I$, for matrices B, C, and so if we can find B, C such that $B A+A C$ is invertible, then $I=R$. We break up into four cases.
(a) Assume $a \neq 0$. As we have

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & a \\
0 & c
\end{array}\right]
$$

and their sum is $\left[\begin{array}{cc}0 & a \\ a & b+c\end{array}\right]$, which has determinant $-a^{2} \neq 0$ by assumption.
(b) Assume $b \neq 0$. Then we look at

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
b & 0 \\
a+d & b
\end{array}\right]
$$

and so the determinant is $b^{2} \neq 0$.
(c) Assume $c \neq 0$.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
c & a+d \\
0 & c
\end{array}\right]
$$

which has determinant c^{2}.
(d) Assume $d \neq 0$.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
b+c & d \\
d & 0
\end{array}\right]
$$

which has determinant $-d^{2}$.
Thus, if any one component is nonzero, we have a unit in the ideal. Now, if R is any ring, I an ideal, and $u \in I$ a unit, then $I=R$, as for all $x \in R$, we have $x u^{-1} \in R$, and so $x u^{-1} \cdot u=x$, and as $u \in I$, this implies that $x \in I$. Thus, $\mathcal{M}_{2 \times 2}$ has only two ideals, 0 and itself.

