
Homework 2 Solutions

1 (a) By definition, for all x ∈ G, (x−1)−1x−1 = e = xx−1. We then
right multiply by x, and obtain (x−1)−1(x−1x) = x(x−1x), and so
(x−1)−1 = x. We will proceed by induction to show that (xy)n =
xnyn. Let x, y ∈ G. For n = 1, the result is (xy)1 = x1y1, which is
xy = xy, which holds. Now assume that (xy)n = xnyn and look at
(xy)n+1. We can factor (xy)n+1 = (xy)nxy, and then by hypothesis
we have (xy)n+1 = xnynxy. AsG is abelian, we have that ynx = xyn,
and so (xy)n+1 = xn(xyn)y = xn+1yn+1., and so G abelian implies
that (xy)n = xnyn for all n.

(b) We proceed by induction. Let x1 ∈ G. Then (x1)−1 = x−1
1 . Now

let x1, . . . , xn ∈ G and assume that (x1 . . . xn−1)−1 = x−1
n−1 . . . x

−1
1 .

Then look at x−1
n x−1

n−1 . . . x
−1
1 . Multiply this by x1 . . . xn and we ob-

tain (x1 . . . xn)(x−1
n . . . x−1

1 ) = (x1 . . . xn−1)(xnx
−1
n )(x−1

n−1 . . . x
−1
1 ) =

(x1 . . . xn−1)(x−1
n−1 . . . x

−1
1 ) = (x1 . . . xn−1)(x1 . . . xn−1)−1 = e. Simi-

larly for left multiplication, and so (x1 . . . xn)−1 = x−1
n . . . x−1

1 .

(c) Let x, y ∈ G arbitrary and assume (xy)2 = x2y2. Then we expand
and obtain xyxy = xxyy. We then left multiply by x−1 and right
multiply by y−1 and obtain x−1xyxyy−1 = x−1xxyyy−1 and so yx =
xy, and so x, y ∈ G commute. As x, y arbitrary, G is abelian.

(d) Let x, y ∈ G arbitrary and let i be such that (xy)i = xiyi, (xy)i+1 =
xi+1yi+1 and (xy)i+2 = xi+2yi+2. We expant (xy)i+1 = (xy)i(xy),
and by the first condition, we have xi+1yi+1 = (xy)i+1 = xiyixy,
we then left multiply by x−i and y−1 to obtain xyi = yix. Now we
look at (xy)i+2 = xi+2yi+2. The left is (xy)i+2 = (xy)i+1(xy) =
xi+1yi+1xy = xi+2yi+2. We then left multiply by x−i−1 and right
multiply to y−1, and obtain yi+1x = xyi+1. This can be expanded to
yyix = xyiy. We apply xyi = yix and obtain yyix = yixy, and then
left multiply by y−i, to finally obtain yx = xy, and so G is abelian.

2 (a) In cycle notation, take σ = (123) and τ = (12). Then σ2 = (132),
τ2 = e and στ = (123)(12) = (13), so (στ)2 = e. Thus, σ2τ2 =
(132) 6= e = (στ)2.

(b) Let G be a finite group. Each element g ∈ G defines an integer,
o(g), the order of g. Let nG = LCM(o(g)|g ∈ G). This is defined,
because it is the least common multiple of finitely many numbers.
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Additionally, as each o(g)|nG, we have gnG = e for all g ∈ G, and so
the claim is proved.

(c) For G = Z/mZ, every element has order dividing m, and one element
has order m. Thus, m is the least common multiple. For G = S3,
the elements have order 1, 2 or 3, and so the least common multiple
is nG = 6. The story is slightly more complex in the case of G = S7.
The elements of this group all have order 1, 2, 3, 4, 5, 6 or 7, and the
least common multiple is 420, which is a sufficient nG for S7.

(d) In general, nG will always divide G, because, as defined, it is the
least common multiple of the orders of the elements, but we know
that o(g)|G for all g ∈ G, and so G is a common multiple of the o(g).

5 (a) Let x, y, z ∈ R×. As R is associative under multiplication, we have
(xy)z = x(yz), and so R× is as well. Additinally, 1R ∈ R×, as
1R · 1R = 1R, and so R× has an identity. As xx−1 = x−1x = 1R,
whenever x is a unit, x−1 is as well, so R× has inverses. The only
question is whether R× is closed under multiplication. So we must
show that if x, y are units then xy is. Now, as x, y are units, y−1, x−1

are, and so (xy)(y−1x−1) = 1R, and so xy ∈ R×.

(b) First, look at R = Z. For this ring, R× = {1,−1}. That 1,−1 are
units follows from 1 · 1 = (−1) · (−1) = 1. To see that they are the
only ones, let n ∈ Z. For n to be a unit, then there must be an
integer m such that nm = 1. We note that Z ⊂ Q, and is in fact a
subring, so if n has inverse m in Z, it does in Q. So we can write
m = 1

n ∈ Q. Now, for any integer other than −1, 1, we have 1
n ∈ Q

but 1
n /∈ Z, and so the only invertible elements of Z are {1,−1}. For

R = Q, we have R× = Q \ {0}, because if a
b ∈ Q is nonzero, then

b
a ∈ Q, and a

b
b
a = 1. For R =M2×2(R), we have R× equal to the set

of matrices A with detA ∈ R \ {0}. This is because if
[
a b
c d

]−1

,

if it exists, is equal to 1
ad−bc

[
d −b
−c a

]
, and the condition is then

that ad− bc = detA is invertible, and over R, every nonzero element
is invertible. Similarly, for R =M2×2(Z), we need ad−bc ∈ {1,−1}.

(c) If a, b ∈ R×, c ∈ R, then the equation axb = c has a unique solution,
x = a−1cb−1. If either a or b isn’t in R×, then there may be no
solutions, for instance, 1 · x · 2 = 3 in Z has no solutions.

6 (a) Let a, b, c ∈ HR. We then write a = a0+a1i+a2j+a3k, and similarly
for b and c. So (a+ b) + c = (a0 + b0) + (a1 + b1)i+ (a2 + b2)j+ (a3 +
b3)k+ (c0 + c1i+ c2j+ c3k) = (a0 + b0 + c0) + . . .+ (a3 + b3 + c3)k =
a0 + (b0 + c0) + . . . + a3 + (b3 + c3)k = a + (b + c), because R is
associative under +. Similarly, a+ b = (a0 + b0) + . . .+ (a3 + b3)k =
(b0 + a0 + . . .+ (b3 + a3)k = b+ a as R is commutative under +. To
see that it has an additive identity, we look at 0 = 0 + 0i+ 0j + 0k,
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and note that a+ 0 = (a0 + 0) + . . .+ (a3 + 0)k = a0 + . . .+ a3k = a,
and to see inverses, let −a = −a0 + . . .+(−a3)k, and then a+(−a) =
(a0 − a0) + . . . + (a3 − a3)k = 0 + . . . + 0k = 0. Now we must show
associativity of multiplication. Look at (ab)c. This expands to ((a0 +
a1i+a2j+a3k)(b0+b1i+b2j+b3j))(c0+c1i+c2j+c3k), this expands
to ((a0b0−a1b1−a2b2−a3b3)+(a0b1 +a1b0 +a2b3−a3b2)i+(a0b2−
a1b3+a2b0+a3b1)j+(a0b3+a1b2−a2b1+a3b0)k)(c0+c1i+c2j+c3k).
This, in turn, is equal to (a0b0c0−a1b1c0−a2b2c0−a3b3c0−a1b0c1−
a0b1c1 +a3b2c1−a2b3c1−a2b0c2−a3b1c2−a0b2c2 +a1b3c2−a3b0c3 +
a2b1c3−a1b2c3−a0b3c3)+(a1b0c0+a0b1c0−a3b2c0+a2b3c0+a0b0c1−
a1b1c1−a2b2c1−a3b3c1−a3b0c2 +a2b1c2−a1b2c2−a0b3c2 +a2b0c3 +
a3b1c3+a0b2c3−a1b3c3)i+(a2b0c0+a3b1c0+a0b2c0−a1b3c0+a3b0c1−
a2b1c1 +a1b2c1 +a0b3c1 +a0b0c2−a1b1c2−a2b2c2−a3b3c2−a1b0c3−
a0b1c3 + a3b2c3 − a2b3c3)j + (a3b0c0 − a2b1c0 + a1b2c0 + a0b3c0 −
a2b0c1−a3b1c1−a0b2c1 +a1b3c1 +a1b0c2 +a0b1c2−a3b2c2 +a2b3c2 +
a0b0c3−a1b1c3−a2b2c3−a3b3c3)k. A similar multiplication procedure
on a(bc) gives the same thing, and so HR is associative. As ij = k
and ji = −k, we can see immediately that HR is noncommutative,
and now we look at the identity. Let 1 = 1R + 0i + 0j + 0k. Then
a1 = (a01R − a10− a20− a30) + (a00 + a11R + a20− a30)i+ (a00−
a10 + a21 +R+ a30)j + (a00 + a10− a20 + a31R)k = a = 1a, and so
is the identity for HR.
We must now show that the function φ : R → HR by a 7→ a +
0i + 0j + 0k is a homomorphism of rings with identity. We begin
by checking φ(a + b) = (a + b) + 0i + 0j + 0k = (a + 0i + 0j +
0k) + (b + 0i + 0j + 0k) = φ(a) + φ(b). We must next work on
φ(a)φ(b) = (a+0i+0j+0k)(b+0i+0j+0k) = (ab−0−0−0)+(0+
0+0−0)i+(0−0+0+0)j+(0+0−0+0)k = ab+0i+0j+0k = φ(ab). All
that remains now is to check that φ(1R) = 1HR

, which holds because
φ(1R) = 1R + 0i+ 0j + 0k = 1HR

as determined above.

(b) To see that HR is a skew field, the only thing that remains is to check
the existence of inverses. Let a = a0 + a1i + a2j + a3k, and define
ā = a0−a1i−a2j−a3k. Now that aā = a2

0+a2
1+a2

2+a2
3+0i+0j+0k

is invertible if it is nonzero, as it is the image of a real number, and
is zero if and only if a = 0. So we can look at ā(aā)−1, and this
will be an inverse for a, as a(ā(aā)−1) = (aā)(aā)−1 = 1HR , so HR is
a skew field. We now solve the equation (1 + i + j + k)x = xi for
x. Set x = x0 + x1i + x2j + x3k, then we have (1 + i + j + k)(x0 +
x1i + x2j + x3k) = (x0 + x1i + x2j + x3k)i. The right hand side
simplifies to x0i−x1−x2k+x3j, and the left hand side simplifies to
(x0 − x1 − x2 − x3) + (x1 + x0 + x3 − x2)i+ (x2 − x3 + x0 + x1)j +
(x3 +x2−x1 +x0)k. Setting these equal, we end up with four linear
equations over R in the variables x0, x1, x2, x3, which are
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x0 − x1 − x2 − x3 = −x1

x1 + x0 + x3 − x2 = x0

x2 − x3 + x0 + x1 = x3

x3 + x2 − x1 + x0 = −x2

These give unique solution 0.
(c) Here we must show that the map C → HR given by (a + bi) 7→

(a+ bi+ 0j+ 0k) is a ring homomorphism. First we check additivity,
set z, w ∈ C and write z = z0 + z1i, w = w0 + w1i, φ(z + w) =
φ((z0 +w0) + (z1 +w1)i) = (z0 +w0) + (z1 +w1)i+ 0j + 0k = (z0 +
z1i+0j+0k)+(w0+w1i+0j+0k) = φ(z)+φ(w). Now we must check
that it respects multiplication φ(z)φ(w) = (z0w0 − z1w1 − 0 − 0) +
(z0w1+z1w0+0−))i+(0−0+0+0)j+(0+0−0+0)k = (z0w0−z1w1)+
(z0w1 +z1w0)i+0j+0k = φ(z0w0−z1w1 +(z0w1 +z1w0)i) = φ(zw).

8 We want to show that there are no ideals other than zero and the whole
ring for R =M2×2(Q). Let I be an ideal, and assume I 6= ∅. Then there

exists A =
[
a b
c d

]
such that at least one of a, b, c, d is nonzero. We note

that since I is an ideal, BA+AC ∈ I, for matrices B,C, and so if we can
find B,C such that BA+AC is invertible, then I = R. We break up into
four cases.

(a) Assume a 6= 0. As we have[
0 0
1 0

] [
a b
c d

]
=

[
0 0
a b

]
and [

a b
c d

] [
0 1
0 0

]
=

[
0 a
0 c

]
,

and their sum is
[

0 a
a b+ c

]
, which has determinant −a2 6= 0 by

assumption.
(b) Assume b 6= 0. Then we look at[

0 0
1 0

] [
a b
c d

]
+

[
a b
c d

] [
0 0
1 0

]
=

[
b 0

a+ d b

]
and so the determinant is b2 6= 0.

(c) Assume c 6= 0.[
0 1
0 0

] [
a b
c d

]
+

[
a b
c d

] [
0 1
0 0

]
=

[
c a+ d
0 c

]
which has determinant c2.
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(d) Assume d 6= 0.[
0 1
0 0

] [
a b
c d

]
+

[
a b
c d

] [
0 0
1 0

]
=

[
b+ c d
d 0

]
which has determinant −d2.

Thus, if any one component is nonzero, we have a unit in the ideal. Now,
if R is any ring, I an ideal, and u ∈ I a unit, then I = R, as for all x ∈ R,
we have xu−1 ∈ R, and so xu−1 · u = x, and as u ∈ I, this implies that
x ∈ I. Thus, M2×2 has only two ideals, 0 and itself.
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