Homework 2 Solutions

1 (a) By definition, for all \(x \in G \), \((x^{-1})^{-1}x^{-1} = e = xx^{-1} \). We then right multiply by \(x \), and obtain \((x^{-1})^{-1}(x^{-1}x) = x(x^{-1}x) \), and so \((x^{-1})^{-1} = x \). We will proceed by induction to show that \((xy)^n = x^n y^n \). Let \(x, y \in G \). For \(n = 1 \), the result is \((xy)^1 = x^1 y^1 \), which is \(xy = xy \), which holds. Now assume that \((xy)^n = x^n y^n \) and look at \((xy)^{n+1} \). We can factor \((xy)^{n+1} = (xy)^n xy \), and then by hypothesis we have \((xy)^{n+1} = x^n y^n xy \). As \(G \) is abelian, we have that \(y^n x = xy^n \), and so \((xy)^{n+1} = x^n(xy^n)y = x^{n+1}y^{n+1} \), and so \(G \) abelian implies that \((xy)^n = x^n y^n \) for all \(n \).

(b) We proceed by induction. Let \(x_1 \in G \). Then \((x_1)^{-1} = x_1^{-1} \). Now let \(x_1, \ldots, x_n \in G \) and assume that \((x_1 \ldots x_{n-1})^{-1} = x_n^{-1} \ldots x_1^{-1} \). Then look at \(x_n^{-1}x_{n-1} \ldots x_1^{-1} \). Multiply this by \(x_1 \ldots x_n \) and we obtain \((x_1 \ldots x_n)(x_n^{-1} \ldots x_1^{-1}) = (x_1 \ldots x_n)(x_n^{-1} \ldots x_1^{-1}) = (x_1 \ldots x_{n-1})(x_{n-1}^{-1} \ldots x_1^{-1}) = (x_1 \ldots x_{n-1})(x_{n-1} \ldots x_1). \) Similarly for left multiplication, and so \((x_1 \ldots x_n)^{-1} = x_n^{-1} \ldots x_1^{-1} \).

(c) Let \(x, y \in G \) arbitrary and assume \((xy)^2 = x^2 y^2 \). Then we expand and obtain \(xxyy = xyxy \). We then left multiply by \(x^{-1} \) and right multiply by \(y^{-1} \) and obtain \(x^{-1}xyxy^{-1} = x^{-1}xyxyy^{-1} \) and so \(xy = yx \), and so \(x, y \) arbitrary, \(G \) is abelian.

(d) Let \(x, y \in G \) arbitrary and let \(i \) be such that \((xy)^i = x^i y^i \), \((xy)^{i+1} = x^{i+1} y^{i+1} \) and \((xy)^{i+2} = x^{i+2} y^{i+2} \). We expand \((xy)^{i+1} = (xy)^i(xy) \), and by the first condition, we have \(x^{i+1} y^{i+1} = (xy)^{i+1} = x^i y^i xy \), we then left multiply by \(x^{-i} \) and \(y^{-1} \) to obtain \(xy^i = y^i x \). Now we look at \((xy)^{i+2} = x^{i+2} y^{i+2} \). The left is \((xy)^{i+2} = (xy)^{i+1}(xy) = x^{i+1} y^{i+1} xy = x^{i+2} y^{i+2} \). We then left multiply by \(x^{-i} \) and right multiply to \(y^{-1} \), and obtain \(y^{i+1} x = xy^{i+1} \). This can be expanded to \(yxy = yx \). We apply \(xy^i = y^i x \) and obtain \(yxy^i = y^i xy \), and then left multiply by \(y^{-1} \), to finally obtain \(gx = xy \), and so \(G \) is abelian.

2 (a) In cycle notation, take \(\sigma = (123) \) and \(\tau = (12) \). Then \(\sigma^2 = (132) \), \(\tau^2 = e \) and \(\sigma \tau = (123)(12) = (13) \), so \((\sigma \tau)^2 = e \). Thus, \(a^2 \tau^2 = (132) \neq e = (\sigma \tau)^2 \).

(b) Let \(G \) be a finite group. Each element \(g \in G \) defines an integer, \(o(g) \), the order of \(g \). Let \(n_G = \text{LCM}(o(g)|g \in G) \). This is defined, because it is the least common multiple of finitely many numbers.
Additionally, as each $o(g)|n_G$, we have $g^{n_G} = e$ for all $g \in G$, and so the claim is proved.

(c) For $G = \mathbb{Z}/m\mathbb{Z}$, every element has order dividing m, and one element has order m. Thus, m is the least common multiple. For $G = S_3$, the elements have order $1, 2$ or 3, and so the least common multiple is $n_G = 6$. The story is slightly more complex in the case of $G = S_7$. The elements of this group all have order $1, 2, 3, 4, 5, 6$ or 7, and the least common multiple is 420, which is a sufficient n_G for S_7.

(d) In general, n_G will always divide G, because, as defined, it is the least common multiple of the orders of the elements, but we know that $o(g)|G$ for all $g \in G$, and so G is a common multiple of the $o(g)$.

5 (a) Let $x, y, z \in R^\times$. As R is associative under multiplication, we have $(xy)z = x(yz)$, and so R^\times is as well. Additionally, $1_R \in R^\times$, as $1_R \cdot 1_R = 1_R$, and so R^\times has an identity. As $xx^{-1} = x^{-1}x = 1_R$, whenever x is a unit, x^{-1} is as well, so R^\times has inverses. The only question is whether R^\times is closed under multiplication. So we must show that if x, y are units then xy is. Now, as x, y are units, y^{-1}, x^{-1} are, and so $(xy)(y^{-1}x^{-1}) = 1_R$, and so $xy \in R^\times$.

(b) First, look at $R = \mathbb{Z}$. For this ring, $R^\times = \{1, -1\}$. That 1, -1 are units follows from $1 \cdot 1 = (-1) \cdot (-1) = 1$. To see that they are the only ones, let $n \in \mathbb{Z}$. For n to be a unit, then there must be an integer m such that $nm = 1$. We note that $\mathbb{Z} \subset \mathbb{Q}$, and is in fact a subring, so if n has inverse m in \mathbb{Z}, it does in \mathbb{Q}. So we can write $m = \frac{1}{n} \in \mathbb{Q}$. Now, for any integer other than $-1, 1$, we have $\frac{1}{n} \not\in \mathbb{Z}$, and so the only invertible elements of \mathbb{Z} are $\{1, -1\}$. For $R = \mathbb{Q}$, we have $R^\times = \mathbb{Q} \setminus \{0\}$, because if $\frac{a}{n} \in \mathbb{Q}$ is nonzero, then $\frac{a}{n} \in \mathbb{Q}$, and $\frac{a}{n} = 1$. For $R = M_{2 \times 2}(\mathbb{R})$, we have R^\times equal to the set of matrices A with $\det A \in \mathbb{R} \setminus \{0\}$. This is because if \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \), if it exists, is equal to $\frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, and the condition is then that $ad - bc = \det A$ is invertible, and over \mathbb{R}, every nonzero element is invertible. Similarly, for $R = M_{2 \times 2}(\mathbb{Z})$, we need $ad - bc \in \{1, -1\}$.

(c) If $a, b \in R^\times$, $c \in R$, then the equation $ab = c$ has a unique solution, $x = a^{-1}cb^{-1}$. If either a or b isn’t in R^\times, then there may be no solutions, for instance, $1 \cdot x \cdot 2$ in \mathbb{Z} has no solutions.

6 (a) Let $a, b, c \in H_R$. We then write $a = a_0 + a_0i + a_0j + a_0k$, and similarly for b and c. So $(a + b) + c = (a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k + (c_0 + c_1 i + c_2 j + c_3 k) = (a_0 + b_0 + c_0) + \ldots + (a_3 + b_3 + c_3)k = a_0 + (b_0 + c_0) + \ldots + a_3 + (b_3 + c_3)k = a + (b + c)$, because R is associative under $+$, Similarly, $a + b = (a_0 + b_0) + \ldots + (a_3 + b_3)k = (b_0 + a_0 + \ldots + (b_3 + a_3)k = b + a$ as R is commutative under $+$. To see that it has an additive identity, we look at $0 = 0 + 0i + 0j + 0k$,
and note that $a + 0 = (a_0 + 0) + \ldots + (a_3 + 0)k = a_0 + \ldots + a_3 k = a$, and to see inverses, let $-a = -a_0 + \ldots + (-a_3)k$, and then $a + (-a) = (a_0 - a_0) + \ldots + (a_3 - a_3)k = 0 + \ldots + 0k = 0$. Now we must show associativity of multiplication. Look at $(ab)c$. This expands to $((a_0 + a_1i + a_2j + a_3k)(b_0 + b_1i + b_2j + b_3k))(c_0 + c_1i + c_2j + c_3k)$, this expands to $(a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a_0 b_1 + a_1 b_0 + a_2 b_3 + a_3 b_2) i + (a_0 b_2 + a_1 b_3 - a_1 b_2 + a_2 b_1) j + (a_0 b_3 + a_1 b_2 - a_2 b_1 + a_3 b_0) k (c_0 + c_1 i + c_2 j + c_3 k)$, this, in turn, is equal to $(a_0 b_0 c_0 - a_1 b_1 c_0 - a_2 b_2 c_0 - a_3 b_3 c_0 - a_1 b_0 c_1 - a_0 b_1 c_1 + a_3 b_2 c_1 - a_2 b_3 c_1 - a_3 b_0 c_2 - a_0 b_1 c_2 + a_1 b_3 c_2 + a_2 b_0 c_2 + a_3 b_1 c_2 - a_1 b_2 c_2 - a_2 b_1 c_2 - a_3 b_0 c_3 + a_0 b_1 c_3 - a_1 b_2 c_3 - a_2 b_3 c_3 + (a_1 b_1 c_1 + a_0 b_2 c_1 - a_3 b_3 c_1 + a_2 b_0 c_1 + a_3 b_1 c_1 - a_1 b_3 c_1 - a_2 b_2 c_1 - a_3 b_1 c_2 - a_0 b_3 c_2 + a_1 b_0 c_2 - a_2 b_1 c_2 - a_3 b_2 c_2 - a_1 b_3 c_2 - a_2 b_0 c_3 + a_3 b_1 c_3 - a_1 b_2 c_3 + a_2 b_3 c_3) i + (a_2 b_0 c_0 + a_3 b_1 c_0 + a_0 b_2 c_0 - a_1 b_3 c_0 + a_2 b_2 c_0 - a_3 b_1 c_1 - a_0 b_3 c_1 - a_1 b_0 c_1 + a_2 b_2 c_1 - a_3 b_1 c_2 - a_0 b_3 c_2 + a_1 b_0 c_2 - a_2 b_1 c_2 - a_3 b_2 c_2 - a_1 b_3 c_2 - a_2 b_0 c_3 + a_3 b_1 c_3 - a_1 b_2 c_3 + a_2 b_3 c_3) j + (a_3 b_0 c_0 - a_2 b_1 c_0 + a_1 b_2 c_0 + a_0 b_3 c_0 - a_3 b_1 c_1 - a_2 b_0 c_1 - a_1 b_3 c_1 + a_0 b_2 c_1 + a_1 b_0 c_2 + a_2 b_3 c_2 - a_3 b_1 c_2 - a_2 b_0 c_3 + a_1 b_2 c_3 - a_0 b_3 c_3) k$. A similar multiplication procedure on $a(bc)$ gives the same thing, and so \mathbb{H}_R is associative. As $ij = k$ and $ji = -k$, we can see immediately that \mathbb{H}_R is noncommutative, and now we look at the identity. Let $1 = 1_R + 0i + 0j + 0k$. Then $a1 = (a_0 1_R - a_1 0 + a_0 0 - a_0 3) + (a_0 0 + a_1 1_R + a_0 0 - a_0 3) i + (a_0 0 - a_0 0 + a_1 1_R + a_0 0 - a_0 3) j + (a_0 0 + a_1 1_R + a_0 0 - a_0 3) k = a = 1a$, and so is the identity for \mathbb{H}_R.

We must now show that the function $\phi : R \to \mathbb{H}_R$ by $a \mapsto a + 0i + 0j + 0k$ is a homomorphism of rings with identity. We begin by checking $\phi(a + b) = (a + b) + 0i + 0j + 0k = (a + 0i + 0j + 0k) + (b + 0i + 0j + 0k) = \phi(a) + \phi(b)$. We must next work on $\phi(a)\phi(b) = (a + 0i + 0j + 0k)(b + 0i + 0j + 0k) = (ab + 0i - 0j + 0k) + (0i + 0j + 0k + 0i + 0j + 0k + 0i + 0j + 0k) = ab + 0i + 0j + 0k = \phi(ab)$. All that remains now is to check that $\phi(1_R) = 1_{\mathbb{H}_R}$, which holds because $\phi(1_R) = 1_R + 0i + 0j + 0k = 1_{\mathbb{H}_R}$ as determined above.

(b) To see that \mathbb{H}_R is a skew field, the only thing that remains is to check the existence of inverses. Let $a = a_0 + a_1 i + a_2 j + a_3 k$, and define $\bar{a} = a_0 - a_1 i - a_2 j - a_3 k$. Now that $a\bar{a} = a_0^2 + a_1^2 + a_2^2 + a_3^2 + 0i + 0j + 0k$ is invertible if it is nonzero, as it is the image of a real number, and is zero if and only if $a = 0$. So we can look at a/\bar{a} and a/\bar{a}, and this will be an inverse for a, as $a(a/\bar{a}) = (a\bar{a})(a/\bar{a})^{-1} = 1_{\mathbb{H}_R}$, so \mathbb{H}_R is a skew field. We now solve the equation $(1 + i + j + k)x = xi$ for x. Set $x = x_0 + x_1 i + x_2 j + x_3 k$, then we have $(1 + i + j + k)(x_0 + x_1 i + x_2 j + x_3 k) = (x_0 + x_1 i + x_2 j + x_3 k)i$. The right hand side simplifies to $x_0 i - x_1 - x_2 k + x_3 j$, and the left hand side simplifies to $(x_0 - x_3 - x_2 - x_3) + (x_1 + x_0 + x_3 - x_2)i + (x_2 - x_3 + x_0 + x_1)j + (x_3 + x_2 - x_1 + x_0) k$. Setting these equal, we end up with four linear equations over R in the variables x_0, x_1, x_2, x_3, which are
\[x_0 - x_1 - x_2 - x_3 = -x_1 \]
\[x_1 + x_0 + x_3 - x_2 = x_0 \]
\[x_2 - x_3 + x_0 + x_1 = x_3 \]
\[x_3 + x_2 - x_1 + x_0 = -x_2 \]

These give unique solution 0.

(c) Here we must show that the map \(\mathbb{C} \rightarrow \mathbb{H}\mathbb{R} \) given by \((a + bi) \mapsto (a + bi + 0j + 0k)\) is a ring homomorphism. First we check additivity, set \(z, w \in \mathbb{C} \) and write \(z = z_0 + z_1 i, w = w_0 + w_1 i, \phi(z + w) = \phi((z_0 + w_0) + (z_1 + w_1)i) = (z_0 + w_0) + (z_1 + w_1)i + 0j + 0k = (z_0 + z_1i + 0j + 0k) + (w_0 + w_1i + 0j + 0k) = \phi(z) + \phi(w) \). Now we must check that it respects multiplication \(\phi(z)\phi(w) = (z_0w_0 - z_1w_1 - 0 - 0) + (z_0w_1 + z_1w_0 + 0 - 0)i + (0 - 0 + 0)j + (0 + 0 - 0 + 0)k = (z_0w_0 - z_1w_1) + (z_0w_1 + z_1w_0)i + 0j + 0k = \phi(zw) \).

8 We want to show that there are no ideals other than zero and the whole ring for \(R = M_{2 \times 2}(\mathbb{Q}) \). Let \(I \) be an ideal, and assume \(I \neq \emptyset \). Then there exists \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) such that at least one of \(a, b, c, d \) is nonzero. We note that since \(I \) is an ideal, \(BA + AC \in I \), for matrices \(B, C \), and so if we can find \(B, C \) such that \(BA + AC \) is invertible, then \(I = R \). We break up into four cases.

(a) Assume \(a \neq 0 \). As we have
\[
\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix}
\]
and
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix},
\]
and their sum is \(\begin{bmatrix} 0 & a \\ a & b + c \end{bmatrix} \), which has determinant \(-a^2 \neq 0 \) by assumption.

(b) Assume \(b \neq 0 \). Then we look at
\[
\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & 0 \\ a + d & b \end{bmatrix}
\]
and so the determinant is \(b^2 \neq 0 \).

(c) Assume \(c \neq 0 \).
\[
\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c & a + d \\ 0 & c \end{bmatrix}
\]
which has determinant \(c^2 \).
(d) Assume \(d \neq 0 \).

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} +
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
= \begin{bmatrix}
b + c & d \\
d & 0
\end{bmatrix}
\]

which has determinant \(-d^2\).

Thus, if any one component is nonzero, we have a unit in the ideal. Now, if \(R \) is any ring, \(I \) an ideal, and \(u \in I \) a unit, then \(I = R \), as for all \(x \in R \), we have \(xu^{-1} \in R \), and so \(xu^{-1} \cdot u = x \), and as \(u \in I \), this implies that \(x \in I \). Thus, \(\mathcal{M}_{2 \times 2} \) has only two ideals, 0 and itself.