Homework 2 Solutions

- 1 (a) By definition, for all $x \in G$, $(x^{-1})^{-1}x^{-1} = e = xx^{-1}$. We then right multiply by x, and obtain $(x^{-1})^{-1}(x^{-1}x) = x(x^{-1}x)$, and so $(x^{-1})^{-1} = x$. We will proceed by induction to show that $(xy)^n = x^n y^n$. Let $x, y \in G$. For n = 1, the result is $(xy)^1 = x^1y^1$, which is xy = xy, which holds. Now assume that $(xy)^n = x^n y^n$ and look at $(xy)^{n+1}$. We can factor $(xy)^{n+1} = (xy)^n xy$, and then by hypothesis we have $(xy)^{n+1} = x^n y^n xy$. As G is abelian, we have that $y^n x = xy^n$, and so $(xy)^{n+1} = x^n (xy^n)y = x^{n+1}y^{n+1}$., and so G abelian implies that $(xy)^n = x^n y^n$ for all n.
 - (b) We proceed by induction. Let $x_1 \in G$. Then $(x_1)^{-1} = x_1^{-1}$. Now let $x_1, \ldots, x_n \in G$ and assume that $(x_1 \ldots x_{n-1})^{-1} = x_{n-1}^{-1} \ldots x_1^{-1}$. Then look at $x_n^{-1} x_{n-1}^{-1} \ldots x_1^{-1}$. Multiply this by $x_1 \ldots x_n$ and we obtain $(x_1 \ldots x_n)(x_n^{-1} \ldots x_1^{-1}) = (x_1 \ldots x_{n-1})(x_n x_n^{-1})(x_{n-1}^{-1} \ldots x_1^{-1}) = (x_1 \ldots x_{n-1})(x_1 \ldots x_{n-1})^{-1} = e$. Similarly for left multiplication, and so $(x_1 \ldots x_n)^{-1} = x_n^{-1} \ldots x_1^{-1}$.
 - (c) Let $x, y \in G$ arbitrary and assume $(xy)^2 = x^2y^2$. Then we expand and obtain xyxy = xxyy. We then left multiply by x^{-1} and right multiply by y^{-1} and obtain $x^{-1}xyxyy^{-1} = x^{-1}xxyyy^{-1}$ and so yx = xy, and so $x, y \in G$ commute. As x, y arbitrary, G is abelian.
 - (d) Let $x, y \in G$ arbitrary and let *i* be such that $(xy)^i = x^i y^i$, $(xy)^{i+1} = x^{i+1}y^{i+1}$ and $(xy)^{i+2} = x^{i+2}y^{i+2}$. We expant $(xy)^{i+1} = (xy)^i(xy)$, and by the first condition, we have $x^{i+1}y^{i+1} = (xy)^{i+1} = x^i y^i xy$, we then left multiply by x^{-i} and y^{-1} to obtain $xy^i = y^i x$. Now we look at $(xy)^{i+2} = x^{i+2}y^{i+2}$. The left is $(xy)^{i+2} = (xy)^{i+1}(xy) = x^{i+1}y^{i+1}xy = x^{i+2}y^{i+2}$. We then left multiply by x^{-i-1} and right multiply to y^{-1} , and obtain $y^{i+1}x = xy^{i+1}$. This can be expanded to $yy^i x = xy^i y$. We apply $xy^i = y^i x$ and obtain $yy^i x = y^i xy$, and then left multiply by y^{-i} , to finally obtain yx = xy, and so G is abelian.
- 2 (a) In cycle notation, take $\sigma = (123)$ and $\tau = (12)$. Then $\sigma^2 = (132)$, $\tau^2 = e$ and $\sigma\tau = (123)(12) = (13)$, so $(\sigma\tau)^2 = e$. Thus, $\sigma^2\tau^2 = (132) \neq e = (\sigma\tau)^2$.
 - (b) Let G be a finite group. Each element $g \in G$ defines an integer, o(g), the order of g. Let $n_G = LCM(o(g)|g \in G)$. This is defined, because it is the least common multiple of finitely many numbers.

Additionally, as each $o(g)|n_G$, we have $g^{n_G} = e$ for all $g \in G$, and so the claim is proved.

- (c) For $G = \mathbb{Z}/m\mathbb{Z}$, every element has order dividing m, and one element has order m. Thus, m is the least common multiple. For $G = S_3$, the elements have order 1, 2 or 3, and so the least common multiple is $n_G = 6$. The story is slightly more complex in the case of $G = S_7$. The elements of this group all have order 1, 2, 3, 4, 5, 6 or 7, and the least common multiple is 420, which is a sufficient n_G for S_7 .
- (d) In general, n_G will always divide G, because, as defined, it is the least common multiple of the orders of the elements, but we know that o(g)|G for all $g \in G$, and so G is a common multiple of the o(g).
- 5 (a) Let $x, y, z \in \mathbb{R}^{\times}$. As R is associative under multiplication, we have (xy)z = x(yz), and so \mathbb{R}^{\times} is as well. Additinally, $1_R \in \mathbb{R}^{\times}$, as $1_R \cdot 1_R = 1_R$, and so \mathbb{R}^{\times} has an identity. As $xx^{-1} = x^{-1}x = 1_R$, whenever x is a unit, x^{-1} is as well, so \mathbb{R}^{\times} has inverses. The only question is whether \mathbb{R}^{\times} is closed under multiplication. So we must show that if x, y are units then xy is. Now, as x, y are units, y^{-1}, x^{-1} are, and so $(xy)(y^{-1}x^{-1}) = 1_R$, and so $xy \in \mathbb{R}^{\times}$.
 - (b) First, look at $R = \mathbb{Z}$. For this ring, $R^{\times} = \{1, -1\}$. That 1, -1 are units follows from $1 \cdot 1 = (-1) \cdot (-1) = 1$. To see that they are the only ones, let $n \in \mathbb{Z}$. For n to be a unit, then there must be an integer m such that nm = 1. We note that $\mathbb{Z} \subset \mathbb{Q}$, and is in fact a subring, so if n has inverse m in \mathbb{Z} , it does in \mathbb{Q} . So we can write $m = \frac{1}{n} \in \mathbb{Q}$. Now, for any integer other than -1, 1, we have $\frac{1}{n} \in \mathbb{Q}$ but $\frac{1}{n} \notin \mathbb{Z}$, and so the only invertible elements of \mathbb{Z} are $\{1, -1\}$. For $R = \mathbb{Q}$, we have $R^{\times} = \mathbb{Q} \setminus \{0\}$, because if $\frac{a}{b} \in \mathbb{Q}$ is nonzero, then $\frac{b}{a} \in \mathbb{Q}$, and $\frac{a}{b} \frac{b}{a} = 1$. For $R = \mathcal{M}_{2 \times 2}(\mathbb{R})$, we have R^{\times} equal to the set

of matrices A with det $A \in \mathbb{R} \setminus \{0\}$. This is because if $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}$,

if it exists, is equal to $\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, and the condition is then that $ad-bc = \det A$ is invertible, and over \mathbb{R} , every nonzero element is invertible. Similarly, for $R = \mathcal{M}_{2\times 2}(\mathbb{Z})$, we need $ad-bc \in \{1,-1\}$.

- (c) If $a, b \in \mathbb{R}^{\times}$, $c \in \mathbb{R}$, then the equation axb = c has a unique solution, $x = a^{-1}cb^{-1}$. If either a or b isn't in \mathbb{R}^{\times} , then there may be no solutions, for instance, $1 \cdot x \cdot 2 = 3$ in \mathbb{Z} has no solutions.
- 6 (a) Let $a, b, c \in \mathbb{H}_R$. We then write $a = a_0 + a_1 i + a_2 j + a_3 k$, and similarly for b and c. So $(a+b) + c = (a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k + (c_0 + c_1i + c_2j + c_3k) = (a_0 + b_0 + c_0) + \ldots + (a_3 + b_3 + c_3)k = a_0 + (b_0 + c_0) + \ldots + a_3 + (b_3 + c_3)k = a + (b + c)$, because R is associative under +. Similarly, $a + b = (a_0 + b_0) + \ldots + (a_3 + b_3)k = (b_0 + a_0 + \ldots + (b_3 + a_3)k = b + a$ as R is commutative under +. To see that it has an additive identity, we look at 0 = 0 + 0i + 0j + 0k,

and note that $a + 0 = (a_0 + 0) + \ldots + (a_3 + 0)k = a_0 + \ldots + a_3k = a$, and to see inverses, let $-a = -a_0 + \ldots + (-a_3)k$, and then a + (-a) = $(a_0 - a_0) + \ldots + (a_3 - a_3)k = 0 + \ldots + 0k = 0$. Now we must show associativity of multiplication. Look at (ab)c. This expands to $((a_0 +$ $a_1i + a_2j + a_3k(b_0 + b_1i + b_2j + b_3j)(c_0 + c_1i + c_2j + c_3k)$, this expands to $((a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_0b_1 + a_1b_0 + a_2b_3 - a_3b_2)i + (a_0b_2 - a_1b_1 - a_2b_2 - a_3b_3) + (a_0b_1 - a_1b_1 - a_2b_2 - a_3b_3) + (a_0b_1 - a_1b_1 - a_2b_2 - a_3b_3) + (a_0b_1 - a_1b_1 - a_2b_3 - a_3b_2)i + (a_0b_1 - a_1b_1 - a_2b_3 - a_3b_3) + (a_0b_1 - a_1b_1 - a_2b_3 - a_3b_3)i + (a_0b_1 - a_2b_3 - a_3b_3)i + (a_0b_2 - a_3b_3)i + (a_0b_1 - a_2b_3 - a_3b_3)i + (a_0b_1 - a_2b_2 - a_3b_3)i + (a_0b_1 - a_2b_2 - a_3b_3)i + (a_0b_1 - a_2b_3 - a_3b_3)i + (a_0b_1 - a_2b_2 - a_3b_3)i + (a_0b_1 - a_2b_3 - a_3b_3)i + (a_0b_1 - a_2b_2 - a_3b_3)i + (a_0b_1 - a_3b_2 - a_3b_3)$ $a_1b_3 + a_2b_0 + a_3b_1)j + (a_0b_3 + a_1b_2 - a_2b_1 + a_3b_0)k)(c_0 + c_1i + c_2j + c_3k).$ This, in turn, is equal to $(a_0b_0c_0 - a_1b_1c_0 - a_2b_2c_0 - a_3b_3c_0 - a_1b_0c_1 - a_2b_0c_0 - a_2b_0c_0$ $a_0b_1c_1 + a_3b_2c_1 - a_2b_3c_1 - a_2b_0c_2 - a_3b_1c_2 - a_0b_2c_2 + a_1b_3c_2 - a_3b_0c_3 + \\$ $a_2b_1c_3 - a_1b_2c_3 - a_0b_3c_3) + (a_1b_0c_0 + a_0b_1c_0 - a_3b_2c_0 + a_2b_3c_0 + a_0b_0c_1 - a_3b_2c_0 + a_2b_3c_0 + a_0b_0c_1 - a_0b_3c_3) + (a_1b_0c_0 + a_0b_1c_0 - a_3b_2c_0 + a_2b_3c_0 + a_0b_0c_1 - a_0b_3c_3) + (a_1b_0c_0 + a_0b_1c_0 - a_3b_2c_0 + a_2b_3c_0 + a_0b_0c_1 - a_0b_0c_0 + a_0b_0c_0c$ $a_1b_1c_1 - a_2b_2c_1 - a_3b_3c_1 - a_3b_0c_2 + a_2b_1c_2 - a_1b_2c_2 - a_0b_3c_2 + a_2b_0c_3 + a_2b_2c_1 - a_3b_3c_2 + a_2b_0c_3 + a_2b_2c_1 - a_3b_3c_1 - a_3b_3c_2 + a_2b_1c_2 - a_1b_2c_2 - a_0b_3c_2 + a_2b_0c_3 + a_2b_1c_2 - a_1b_2c_2 - a_0b_3c_2 + a_2b_0c_3 + a_2b$ $a_3b_1c_3 + a_0b_2c_3 - a_1b_3c_3)i + (a_2b_0c_0 + a_3b_1c_0 + a_0b_2c_0 - a_1b_3c_0 + a_3b_0c_1 - a_1b_3c_0 + a_2b_3c_0 + a_3b_1c_0 + a_0b_2c_0 - a_1b_3c_0 + a_3b_0c_1 - a_1b_3c_0 + a$ $a_2b_1c_1 + a_1b_2c_1 + a_0b_3c_1 + a_0b_0c_2 - a_1b_1c_2 - a_2b_2c_2 - a_3b_3c_2 - a_1b_0c_3 - a_2b_0c_3 - a_2b$ $a_0b_1c_3 + a_3b_2c_3 - a_2b_3c_3)j + (a_3b_0c_0 - a_2b_1c_0 + a_1b_2c_0 + a_0b_3c_0 - a_0b_1c_3 + a_0b_2c_0 + a_0b_3c_0 - a_0b_1c_3 + a_0b_2c_3 - a_0b_3c_0 - a_0b_1c_3 + a_0b_2c_3 - a_0b_3c_0 - a_0b_1c_0 + a_0b_2c_0 + a_0b_3c_0 - a_0b_1c_0 + a_0b_3c_0 - a_0b_1c_0 + a_0b_2c_0 + a_0b_3c_0 + a_0b_2c_0 + a_0b_3c_0 + a$ $a_2b_0c_1 - a_3b_1c_1 - a_0b_2c_1 + a_1b_3c_1 + a_1b_0c_2 + a_0b_1c_2 - a_3b_2c_2 + a_2b_3c_2 + a_2b$ $a_0b_0c_3-a_1b_1c_3-a_2b_2c_3-a_3b_3c_3)k$. A similar multiplication procedure on a(bc) gives the same thing, and so \mathbb{H}_R is associative. As ij = kand ji = -k, we can see immediately that \mathbb{H}_R is noncommutative, and now we look at the identity. Let $1 = 1_R + 0i + 0j + 0k$. Then $a1 = (a_01_R - a_10 - a_20 - a_30) + (a_00 + a_11_R + a_20 - a_30)i + (a_00 - a_30)i + (a$ $a_10 + a_21 + R + a_30j + (a_00 + a_10 - a_20 + a_31_R)k = a = 1a$, and so is the identity for \mathbb{H}_R .

We must now show that the function $\phi : R \to \mathbb{H}_R$ by $a \mapsto a + 0i + 0j + 0k$ is a homomorphism of rings with identity. We begin by checking $\phi(a + b) = (a + b) + 0i + 0j + 0k = (a + 0i + 0j + 0k) + (b + 0i + 0j + 0k) = \phi(a) + \phi(b)$. We must next work on $\phi(a)\phi(b) = (a + 0i + 0j + 0k)(b + 0i + 0j + 0k) = (ab - 0 - 0 - 0) + (0 + 0 + 0 - 0)i + (0 - 0 + 0 + 0)j + (0 + 0 - 0 + 0)k = ab + 0i + 0j + 0k = \phi(ab)$. All that remains now is to check that $\phi(1_R) = 1_{\mathbb{H}_R}$, which holds because $\phi(1_R) = 1_R + 0i + 0j + 0k = 1_{\mathbb{H}_R}$ as determined above.

(b) To see that $\mathbb{H}_{\mathbb{R}}$ is a skew field, the only thing that remains is to check the existence of inverses. Let $a = a_0 + a_1i + a_2j + a_3k$, and define $\bar{a} = a_0 - a_1i - a_2j - a_3k$. Now that $a\bar{a} = a_0^2 + a_1^2 + a_2^2 + a_3^2 + 0i + 0j + 0k$ is invertible if it is nonzero, as it is the image of a real number, and is zero if and only if a = 0. So we can look at $\bar{a}(a\bar{a})^{-1}$, and this will be an inverse for a, as $a(\bar{a}(a\bar{a})^{-1}) = (a\bar{a})(a\bar{a})^{-1} = 1_{\mathbb{H}_{\mathbb{R}}}$, so $\mathbb{H}_{\mathbb{R}}$ is a skew field. We now solve the equation (1 + i + j + k)x = xi for x. Set $x = x_0 + x_1i + x_2j + x_3k$, then we have $(1 + i + j + k)(x_0 + x_1i + x_2j + x_3k) = (x_0 + x_1i + x_2j + x_3k)i$. The right hand side simplifies to $x_0i - x_1 - x_2k + x_3j$, and the left hand side simplifies to $(x_0 - x_1 - x_2 - x_3) + (x_1 + x_0 + x_3 - x_2)i + (x_2 - x_3 + x_0 + x_1)j + (x_3 + x_2 - x_1 + x_0)k$. Setting these equal, we end up with four linear equations over \mathbb{R} in the variables x_0, x_1, x_2, x_3 , which are

$$\begin{array}{rcl} x_0 - x_1 - x_2 - x_3 & = & -x_1 \\ x_1 + x_0 + x_3 - x_2 & = & x_0 \\ x_2 - x_3 + x_0 + x_1 & = & x_3 \\ x_3 + x_2 - x_1 + x_0 & = & -x_2 \end{array}$$

These give unique solution 0.

- (c) Here we must show that the map $\mathbb{C} \to \mathbb{H}_{\mathbb{R}}$ given by $(a+bi) \mapsto (a+bi+0j+0k)$ is a ring homomorphism. First we check additivity, set $z, w \in \mathbb{C}$ and write $z = z_0 + z_1 i, w = w_0 + w_1 i, \phi(z+w) = \phi((z_0+w_0) + (z_1+w_1)i) = (z_0+w_0) + (z_1+w_1)i + 0j + 0k = (z_0+z_1i+0j+0k) + (w_0+w_1i+0j+0k) = \phi(z)+\phi(w)$. Now we must check that it respects multiplication $\phi(z)\phi(w) = (z_0w_0 z_1w_1 0 0) + (z_0w_1+z_1w_0+0-)i+(0-0+0+0)j+(0+0-0+0)k = (z_0w_0-z_1w_1) + (z_0w_1+z_1w_0)i + 0j + 0k = \phi(z_0w_0 z_1w_1 + (z_0w_1+z_1w_0)i) = \phi(zw).$
- 8 We want to show that there are no ideals other than zero and the whole ring for $R = \mathcal{M}_{2 \times 2}(\mathbb{Q})$. Let I be an ideal, and assume $I \neq \emptyset$. Then there exists $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that at least one of a, b, c, d is nonzero. We note that since I is an ideal, $BA + AC \in I$, for matrices B, C, and so if we can find B, C such that BA + AC is invertible, then I = R. We break up into four cases.
 - (a) Assume $a \neq 0$. As we have

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix},$$
$$\begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix}$$

and their sum is $\begin{bmatrix} 0 & a \\ a & b+c \end{bmatrix}$, which has determinant $-a^2 \neq 0$ by assumption.

(b) Assume $b \neq 0$. Then we look at

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & 0 \\ a+d & b \end{bmatrix}$$

and so the determinant is $b^2 \neq 0$.

(c) Assume $c \neq 0$.

and

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c & a+d \\ 0 & c \end{bmatrix}$$

which has determinant c^2 .

(d) Assume $d \neq 0$.

0	1][a	b		b	0	0	_[b+c d	d
0	0] [С	$d \rfloor$	+ c	$d \rfloor$	1	0		d	0

which has determinant $-d^2$.

Thus, if any one component is nonzero, we have a unit in the ideal. Now, if R is any ring, I an ideal, and $u \in I$ a unit, then I = R, as for all $x \in R$, we have $xu^{-1} \in R$, and so $xu^{-1} \cdot u = x$, and as $u \in I$, this implies that $x \in I$. Thus, $\mathcal{M}_{2\times 2}$ has only two ideals, 0 and itself.