
Homework 3 Solutions

1 (a) Assume thatG is abelian. Then let (x, y), (x′, y′) ∈ G. Then (x, y)(x′, y′) =
(x′, y′)(x, y). Using the group law, this is (xx′, yy′) = (x′x, y′x),
which means that xx′ = x′x and yy′ = y′y, and so G1, G2 are
both abelian. Conversely, assume that G1, G2 are abelian. Let
(x, y), (x′, y′) ∈ G. Then (x, y)(x′, y′) = (xx′, yy′). As G1, G2 are
abelian, this is just (x′x, y′y) = (x′, y′)(x, y), and so G is abelian.

(b) This is false, as we can take G1 = Z/2Z and G2 = Z/3Z. Then
G ∼= Z/6Z, and G has normal subgroup {0, 3}, and so isn’t simple.

4 This is false, as if R1, R2 are skew fields, look at the elements of R =
R1 ×R2 given by (1R1 , 0R2) and (0R1 , 1R2). Neither of these is zero in R.
However, their product is (0R1 , 0R2) = 0R, and so they are zero divisors.
This implies that they cannot be units, and so not every element of R is
invertible.

5 (a) For this whole part of the problem, let f, g, h ∈ F(X,G) and x ∈ X
be arbitrary.
Closure: By definition, (f ∗ g)(x) = f(x)g(x). As G is a group,
f(x)g(x) is an element of G. Thus, f ∗ g defines a function by x 7→
f(x)g(x) which takes elements of X to elements of G, and so f ∗ g ∈
F(X,G).
Associativity: We start with (f∗g)∗h(x). This is equal to (f(x)g(x))h(x),
by the definition of ∗. Now, as G is associative, this is equal to
f(x)(g(x)h(x)). By the definition of ∗ again, we can write this as
(f ∗ (g ∗ h))(x), and so (f ∗ g) ∗ h = f ∗ (g ∗ h).
Identity: Define the function e : X → G by taking every x ∈ X
to eG, the identity in G. Now, we look at (f ∗ e)(x) = f(x)e(x) =
f(x)eG = f(x) = eGf(x) = e(x)f(x) = (e ∗ f)(x). Thus, e is the
identity for the operation ∗.
Inverses: Define the function finv by for all x ∈ X, finv(x) = f(x)−1.
We claim that this is the inverse function for f under ∗. We have
(finv ∗ f)(x) = finv(x)f(x) = f(x)−1f(x) = eG = f(x)f(x)−1 =
f(x)finv(x) = (f ∗ finv)(x), which shows that this is the case.
Commutativity: Assume that G is an abelian group. Then (f ∗
g)(x) = f(x)g(x) = g(x)f(x) = (g ∗ f)(x), and so ∗ is commutative.
Now assume that ∗ is commutative. For a ∈ G, we define fa ∈
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F(X,G) to be the function taking all x ∈ X to a ∈ G. Let a, b ∈ G.
Then ab = fa(x)fb(x) = (fa∗fb)(x) = (fb∗fa)(x) = fb(x)fa(x) = ba,
and so G is abelian.

(b) Let f, g ∈ F(X,G) and let y ∈ Y ⊂ X. Then φ(f ∗ g)(y) = (f ∗
g)(y) by the definition of φ. This is then f(y)g(y), and then by the
definition of φ again, we have f(y) = φ(f)(y) and g(y) = φ(g)(y),
and so have f(y)g(y) = φ(f)(y)φ(g)(y). Then by the definition of ∗
on Y , we have (φ(f) ∗ φ(g))(y), and so, putting it all together, we
have that φ(f ∗g)(y) = (φ(f)∗φ(g))(y), and so φ is a homomorphism.

(c) The image of φ consists of all functions f : Y → G which can be
obtained by restricting a function f̃ : X → G. Fix f : Y → G

arbitrary. Then define f̃ by f̃(x) =

{
f(x) x ∈ Y
eG x /∈ Y

. For all y ∈ Y ,

we have f(y) = f̃(y), and so φ(f̃) = f . Thus, f is in the image
of φ. As f was arbitrary, this shows that φ is surjective, and so
Im(φ) = F(Y,G).
The kernel of φ consists of those functions f : X → G which have
φ(f) equal to the function eY : Y → G which maps all y ∈ Y to eG.
This will be precisely the functions f : X → G which have f(y) = eG

for all y ∈ Y , by the definition of φ.

6 (a) Assume that H < G. Then we want to show that F(X,H) <
F(X,G). Now, for any group, a subset is a subgroup if and only
if for all x, y in the subset, xy−1 is in it as well. Let f, g ∈ F(X,H).
Look at f ∗ ginv. Fix x ∈ X. Then (f ∗ ginv)(x) = f(x)ginv(x) =
f(x)g(x)−1, and as f(x) and g(x) are in H, which is a subgroup,
f(x)g(x)−1 ∈ H, and so f ∗ ginv defines a map X → H, thus telling
us that F(X,H) is a subgroup of F(X,G).
Assume that F(X,H) is a subgroup of F(X,G). Let a, b ∈ H. We
want to show that ab−1 ∈ H. Define fa, fb : X → H by fa(x) = a
and fb(x) = b for all x ∈ X. Then fa, fb ∈ F(X,H). Thus, in
particular, fa ∗ fb,inv ∈ F(X,H). Now, evaluate on x, and we obtain
(fa ∗ fb,inv)(x) = fa(x)fb,inv(x) = fa(x)fb(x)−1 = ab−1. Now, as
fa ∗ fb,inv ∈ F(X,H), anything we get by evaluation is in H, and so
ab−1 ∈ H. So H is a subgroup of G.

(b) Assume that H is normal in G. We want to show that for all g ∈
F(X,G) and all h ∈ F(X,H), we have g ∗ h ∗ ginv ∈ H. To do so,
let g ∈ F(X,G), h ∈ F(X,H) and x ∈ X arbitrary. Then look at
(g ∗ f ∗ ginv). We must show that this maps into H. Evaluating on
x, we obtain (g ∗ f ∗ ginv)(x) = g(x)f(x)g(x)−1. Now, as f(x) ∈ H
and g(x) ∈ G, with H normal in G, we have g(x)f(x)g(x)−1 ∈ H, as
desired.
Now, assume that F(X,H) is normal in F(X,G). Keep our definition
of fa from above for all a ∈ G. Let g ∈ G and h ∈ H. We claim that

2



ghg−1 ∈ H. Fix x ∈ X, and look at fg ∗ fh ∗ fh,inv. As F(X,H) is
a normal subgroup, we have that fg ∗ fh ∗ fg,inv is a map X → H.
Evaluating on x, we get the element of H (fg ∗ fh ∗ fg,inv)(x) =
fg(x)fh(x)fg(x)−1 = ghg−1 ∈ H, so H is normal in G.

(c) Assume that H is a normal subgroup of G (and thus, by the previous
part, F(X,H) is a normal subgroup of F(X,G)). Then we claim
that there exists φ : F(X,G/H) → F(X,G)/F(X,H) which is an
isomorphism of groups.
We define φ as follows: let f : X → G/H be any function. Then for
each x, f(x) = gH for some g ∈ G. We set φ(f) to be the class of
functions f ′ : X → G which contains the function f ′(x) = g, with g
as above. We must prove that φ is well-defined, a homomorphism,
injective and surjective.
To see that it is well defined, let f : X → G/H, let x ∈ X and let
g, g′ ∈ G such that f(x) = gH = g′H. Then there are two candidates
for φ(f), functions with f ′(x) = g and f ′′(x) = g′ (defined point by
point on X). We must show that they are in the same class modulo
F(X,H). To do so, we must show that f ′ ∗ f ′′inv is in the same class
as the identity map, because then f ′ and f ′′ have the same inverse
class. Now, (f ′ ∗ f ′′inv)(x) = f ′(x)f ′′(x)−1 = gg′

−1. Now, gg′−1 is an
element of H, as gH = g′H = Hg′ = Hg (with the last because H
is normal), and we can right multiply by g′−1 to obtain the equation
H = Hgg′

−1 = gg′
−1
H. Thus, there exists a function α : X → H

such that f ′ ∗ f ′′inv = α, and so f ′ and f ′′ define the same class. So φ
is a well defined function.
Next we must check that it is a homomorphism. Let f, g : X → G/H.
Then f ∗ g is a function X → G/H. So φ(f ∗ g) defines a class in
the quotient F(X,G)/F(X,H). Let x ∈ X. Set f(x) = aH and
g(x) = bH. Then (f ∗ g)(x) = abH. Now, apply φ to f ∗ g and
we get φ(f ∗ g)(x) is a function α : X → G such that α(x) = ab.
We want to show that α is in the same class as φ(f) ∗ φ(g). Now,
(φ(f)∗φ(g))(x) = φ(f)(x)φ(g)(x) = ab, and so for all x ∈ X, we have
φ(f)(x)φ(g)(x) = α(x) = φ(f ∗ g)(x), and so φ is a homomorphism.
Now we show that it is injective. Let f : X → G/H such that φ(f)
is a function X → H. Let x ∈ X, then f(x) = gH for some g ∈ G,
and φ(f)(x) = g. Now, φ(f) is a function X → H if and only if
g ∈ H, and so f(x) = H in the first place, which is the same thing as
f being the identity element in F(X,G/H), so the kernel is trivial,
and φ is injective.
Finally, we want to show that φ is surjective. Let f : X → G by any
function. Define f̃ : X → G/H by for all x ∈ X, f̃(x) = f(x)H.
Then φ(f̃)(x) = f(x) for all x ∈ X, and so φ(f̃) = f . Thus, φ is
surjective, and so is an isomorphism.

8 First, we will show that if |X| > 1 then F(X,R) cannot be a skew field,
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and then we will show that, if |X| = 1, then F(X,R) is a skew field if and
only if R is, which solves the problem.

Assume that |X| > 1. Let x, y ∈ X with x 6= y. Then define f ∈ F(X,R)
by f(x) = 1R and f(a) = 0 for all a ∈ X with a 6= x and define g(y) = 1R

and g(a) = 0 for all a ∈ X not equal to a. Then for all a ∈ X, we have
(f ∗ g)(a) = f(a)g(a) = 0, because at least one of them is zero. Thus,
F(X,R) has zero divisors and cannot be a skew field.

Now assume that |X| = 1. Denote the single element of X by x. We will
in fact prove a stronger statement: F(X,R) is isomorphic to R, regardless
of the properties of R. Define a map γ : F(X,R) → R by for each
f : X → R, γ(f) = f(x). We first prove that this is a homomorphism of
rings with identity.

Let f, g ∈ F(X,R). Then γ(f ⊕ g) = (f ⊕ g)(x) = f(x) + g(x) = γ(f) +
γ(g) and γ(f � g) = (f � g)(x) = f(x)g(x) = γ(f)γ(g), so it is a ring
homomorphism. Additionally, if e is the multiplicative identity, then it
must have e(x) = 1R, and so γ(e) = 1R, so it preserves the identity. Now,
we must show surjective and injective.

To see that γ is surjective, let r ∈ R. Then we can define a function
f : X → R by f(x) = r for the only x ∈ X. Then, γ(f) = f(x) = r,
and so γ is surjective. To see that it is injective, let f be any function
such that γ(f) = 0. Then f(x) = 0, but the only element of X is x, so
f is the constant function mapping all of X to zero, which is the additive
identity of F(X,R). Thus, the kernel is trivial and γ is injective, and so
is an isomorphism.

As F(X,R) is isomorphic to R, certainly R is a skew field if and only if
F(X,R) is.
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