Homework 3 Solutions

1 (a) Assume that G is abelian. Then let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in G$. Then $(x, y)\left(x^{\prime}, y^{\prime}\right)=$ $\left(x^{\prime}, y^{\prime}\right)(x, y)$. Using the group law, this is $\left(x x^{\prime}, y y^{\prime}\right)=\left(x^{\prime} x, y^{\prime} x\right)$, which means that $x x^{\prime}=x^{\prime} x$ and $y y^{\prime}=y^{\prime} y$, and so G_{1}, G_{2} are both abelian. Conversely, assume that G_{1}, G_{2} are abelian. Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in G$. Then $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)$. As G_{1}, G_{2} are abelian, this is just $\left(x^{\prime} x, y^{\prime} y\right)=\left(x^{\prime}, y^{\prime}\right)(x, y)$, and so G is abelian.
(b) This is false, as we can take $G_{1}=\mathbb{Z} / 2 \mathbb{Z}$ and $G_{2}=\mathbb{Z} / 3 \mathbb{Z}$. Then $G \cong \mathbb{Z} / 6 \mathbb{Z}$, and G has normal subgroup $\{0,3\}$, and so isn't simple.

4 This is false, as if R_{1}, R_{2} are skew fields, look at the elements of $R=$ $R_{1} \times R_{2}$ given by ($1_{R_{1}}, 0_{R_{2}}$) and ($0_{R_{1}}, 1_{R_{2}}$). Neither of these is zero in R. However, their product is $\left(0_{R_{1}}, 0_{R_{2}}\right)=0_{R}$, and so they are zero divisors. This implies that they cannot be units, and so not every element of R is invertible.

5 (a) For this whole part of the problem, let $f, g, h \in \mathcal{F}(X, G)$ and $x \in X$ be arbitrary.
Closure: By definition, $(f * g)(x)=f(x) g(x)$. As G is a group, $f(x) g(x)$ is an element of G. Thus, $f * g$ defines a function by $x \mapsto$ $f(x) g(x)$ which takes elements of X to elements of G, and so $f * g \in$ $\mathcal{F}(X, G)$.
Associativity: We start with $(f * g) * h(x)$. This is equal to $(f(x) g(x)) h(x)$, by the definition of $*$. Now, as G is associative, this is equal to $f(x)(g(x) h(x))$. By the definition of $*$ again, we can write this as $(f *(g * h))(x)$, and so $(f * g) * h=f *(g * h)$.
Identity: Define the function $e: X \rightarrow G$ by taking every $x \in X$ to e_{G}, the identity in G. Now, we look at $(f * e)(x)=f(x) e(x)=$ $f(x) e_{G}=f(x)=e_{G} f(x)=e(x) f(x)=(e * f)(x)$. Thus, e is the identity for the operation $*$.
Inverses: Define the function $f_{\text {inv }}$ by for all $x \in X, f_{\text {inv }}(x)=f(x)^{-1}$. We claim that this is the inverse function for f under $*$. We have $\left(f_{i n v} * f\right)(x)=f_{i n v}(x) f(x)=f(x)^{-1} f(x)=e_{G}=f(x) f(x)^{-1}=$ $f(x) f_{\text {inv }}(x)=\left(f * f_{\text {inv }}\right)(x)$, which shows that this is the case.
Commutativity: Assume that G is an abelian group. Then $(f *$ $g)(x)=f(x) g(x)=g(x) f(x)=(g * f)(x)$, and so $*$ is commutative. Now assume that $*$ is commutative. For $a \in G$, we define $f_{a} \in$
$\mathcal{F}(X, G)$ to be the function taking all $x \in X$ to $a \in G$. Let $a, b \in G$. Then $a b=f_{a}(x) f_{b}(x)=\left(f_{a} * f_{b}\right)(x)=\left(f_{b} * f_{a}\right)(x)=f_{b}(x) f_{a}(x)=b a$, and so G is abelian.
(b) Let $f, g \in \mathcal{F}(X, G)$ and let $y \in Y \subset X$. Then $\phi(f * g)(y)=(f *$ $g)(y)$ by the definition of ϕ. This is then $f(y) g(y)$, and then by the definition of ϕ again, we have $f(y)=\phi(f)(y)$ and $g(y)=\phi(g)(y)$, and so have $f(y) g(y)=\phi(f)(y) \phi(g)(y)$. Then by the definition of $*$ on Y, we have $(\phi(f) * \phi(g))(y)$, and so, putting it all together, we have that $\phi(f * g)(y)=(\phi(f) * \phi(g))(y)$, and so ϕ is a homomorphism.
(c) The image of ϕ consists of all functions $f: Y \rightarrow G$ which can be obtained by restricting a function $\tilde{f}: X \rightarrow G$. Fix $f: Y \rightarrow G$ arbitrary. Then define \tilde{f} by $\tilde{f}(x)=\left\{\begin{array}{ll}f(x) & x \in Y \\ e_{G} & x \notin Y\end{array}\right.$. For all $y \in Y$, we have $f(y)=\tilde{f}(y)$, and so $\phi(\tilde{f})=f$. Thus, f is in the image of ϕ. As f was arbitrary, this shows that ϕ is surjective, and so $\operatorname{Im}(\phi)=\mathcal{F}(Y, G)$.
The kernel of ϕ consists of those functions $f: X \rightarrow G$ which have $\phi(f)$ equal to the function $e_{Y}: Y \rightarrow G$ which maps all $y \in Y$ to e_{G}. This will be precisely the functions $f: X \rightarrow G$ which have $f(y)=e_{G}$ for all $y \in Y$, by the definition of ϕ.

6 (a) Assume that $H<G$. Then we want to show that $\mathcal{F}(X, H)<$ $\mathcal{F}(X, G)$. Now, for any group, a subset is a subgroup if and only if for all x, y in the subset, $x y^{-1}$ is in it as well. Let $f, g \in \mathcal{F}(X, H)$. Look at $f * g_{\text {inv }}$. Fix $x \in X$. Then $\left(f * g_{\text {inv }}\right)(x)=f(x) g_{\text {inv }}(x)=$ $f(x) g(x)^{-1}$, and as $f(x)$ and $g(x)$ are in H, which is a subgroup, $f(x) g(x)^{-1} \in H$, and so $f * g_{\text {inv }}$ defines a map $X \rightarrow H$, thus telling us that $\mathcal{F}(X, H)$ is a subgroup of $\mathcal{F}(X, G)$.
Assume that $\mathcal{F}(X, H)$ is a subgroup of $\mathcal{F}(X, G)$. Let $a, b \in H$. We want to show that $a b^{-1} \in H$. Define $f_{a}, f_{b}: X \rightarrow H$ by $f_{a}(x)=a$ and $f_{b}(x)=b$ for all $x \in X$. Then $f_{a}, f_{b} \in \mathcal{F}(X, H)$. Thus, in particular, $f_{a} * f_{b, \text { inv }} \in \mathcal{F}(X, H)$. Now, evaluate on x, and we obtain $\left(f_{a} * f_{b, i n v}\right)(x)=f_{a}(x) f_{b, i n v}(x)=f_{a}(x) f_{b}(x)^{-1}=a b^{-1}$. Now, as $f_{a} * f_{b, i n v} \in \mathcal{F}(X, H)$, anything we get by evaluation is in H, and so $a b^{-1} \in H$. So H is a subgroup of G.
(b) Assume that H is normal in G. We want to show that for all $g \in$ $\mathcal{F}(X, G)$ and all $h \in \mathcal{F}(X, H)$, we have $g * h * g_{\text {inv }} \in H$. To do so, let $g \in \mathcal{F}(X, G), h \in \mathcal{F}(X, H)$ and $x \in X$ arbitrary. Then look at $\left(g * f * g_{\text {inv }}\right)$. We must show that this maps into H. Evaluating on x, we obtain $\left(g * f * g_{\text {inv }}\right)(x)=g(x) f(x) g(x)^{-1}$. Now, as $f(x) \in H$ and $g(x) \in G$, with H normal in G, we have $g(x) f(x) g(x)^{-1} \in H$, as desired.
Now, assume that $\mathcal{F}(X, H)$ is normal in $\mathcal{F}(X, G)$. Keep our definition of f_{a} from above for all $a \in G$. Let $g \in G$ and $h \in H$. We claim that
$g h g^{-1} \in H$. Fix $x \in X$, and look at $f_{g} * f_{h} * f_{h, \text { inv }}$. As $\mathcal{F}(X, H)$ is a normal subgroup, we have that $f_{g} * f_{h} * f_{g, i n v}$ is a map $X \rightarrow H$. Evaluating on x, we get the element of $H\left(f_{g} * f_{h} * f_{g, i n v}\right)(x)=$ $f_{g}(x) f_{h}(x) f_{g}(x)^{-1}=g h g^{-1} \in H$, so H is normal in G.
(c) Assume that H is a normal subgroup of G (and thus, by the previous part, $\mathcal{F}(X, H)$ is a normal subgroup of $\mathcal{F}(X, G))$. Then we claim that there exists $\phi: \mathcal{F}(X, G / H) \rightarrow \mathcal{F}(X, G) / \mathcal{F}(X, H)$ which is an isomorphism of groups.
We define ϕ as follows: let $f: X \rightarrow G / H$ be any function. Then for each $x, f(x)=g H$ for some $g \in G$. We set $\phi(f)$ to be the class of functions $f^{\prime}: X \rightarrow G$ which contains the function $f^{\prime}(x)=g$, with g as above. We must prove that ϕ is well-defined, a homomorphism, injective and surjective.
To see that it is well defined, let $f: X \rightarrow G / H$, let $x \in X$ and let $g, g^{\prime} \in G$ such that $f(x)=g H=g^{\prime} H$. Then there are two candidates for $\phi(f)$, functions with $f^{\prime}(x)=g$ and $f^{\prime \prime}(x)=g^{\prime}$ (defined point by point on X). We must show that they are in the same class modulo $\mathcal{F}(X, H)$. To do so, we must show that $f^{\prime} * f_{i n v}^{\prime \prime}$ is in the same class as the identity map, because then f^{\prime} and $f^{\prime \prime}$ have the same inverse class. Now, $\left(f^{\prime} * f_{i n v}^{\prime \prime}\right)(x)=f^{\prime}(x) f^{\prime \prime}(x)^{-1}=g g^{\prime^{-1}}$. Now, $g g^{-1}$ is an element of H, as $g H=g^{\prime} H=H g^{\prime}=H g$ (with the last because H is normal), and we can right multiply by $g^{\prime-1}$ to obtain the equation $H=H g g^{\prime-1}=g g^{-1} H$. Thus, there exists a function $\alpha: X \rightarrow H$ such that $f^{\prime} * f_{\text {inv }}^{\prime \prime}=\alpha$, and so f^{\prime} and $f^{\prime \prime}$ define the same class. So ϕ is a well defined function.
Next we must check that it is a homomorphism. Let $f, g: X \rightarrow G / H$. Then $f * g$ is a function $X \rightarrow G / H$. So $\phi(f * g)$ defines a class in the quotient $\mathcal{F}(X, G) / \mathcal{F}(X, H)$. Let $x \in X$. Set $f(x)=a H$ and $g(x)=b H$. Then $(f * g)(x)=a b H$. Now, apply ϕ to $f * g$ and we get $\phi(f * g)(x)$ is a function $\alpha: X \rightarrow G$ such that $\alpha(x)=a b$. We want to show that α is in the same class as $\phi(f) * \phi(g)$. Now, $(\phi(f) * \phi(g))(x)=\phi(f)(x) \phi(g)(x)=a b$, and so for all $x \in X$, we have $\phi(f)(x) \phi(g)(x)=\alpha(x)=\phi(f * g)(x)$, and so ϕ is a homomorphism. Now we show that it is injective. Let $f: X \rightarrow G / H$ such that $\phi(f)$ is a function $X \rightarrow H$. Let $x \in X$, then $f(x)=g H$ for some $g \in G$, and $\phi(f)(x)=g$. Now, $\phi(f)$ is a function $X \rightarrow H$ if and only if $g \in H$, and so $f(x)=H$ in the first place, which is the same thing as f being the identity element in $\mathcal{F}(X, G / H)$, so the kernel is trivial, and ϕ is injective.
Finally, we want to show that ϕ is surjective. Let $f: X \rightarrow G$ by any function. Define $\tilde{f}: X \rightarrow G / H$ by for all $x \in X, \tilde{f}(x)=f(x) H$. Then $\phi(\tilde{f})(x)=f(x)$ for all $x \in X$, and so $\phi(\tilde{f})=f$. Thus, ϕ is surjective, and so is an isomorphism.

8 First, we will show that if $|X|>1$ then $\mathcal{F}(X, R)$ cannot be a skew field,
and then we will show that, if $|X|=1$, then $\mathcal{F}(X, R)$ is a skew field if and only if R is, which solves the problem.
Assume that $|X|>1$. Let $x, y \in X$ with $x \neq y$. Then define $f \in \mathcal{F}(X, R)$ by $f(x)=1_{R}$ and $f(a)=0$ for all $a \in X$ with $a \neq x$ and define $g(y)=1_{R}$ and $g(a)=0$ for all $a \in X$ not equal to a. Then for all $a \in X$, we have $(f * g)(a)=f(a) g(a)=0$, because at least one of them is zero. Thus, $\mathcal{F}(X, R)$ has zero divisors and cannot be a skew field.
Now assume that $|X|=1$. Denote the single element of X by x. We will in fact prove a stronger statement: $\mathcal{F}(X, R)$ is isomorphic to R, regardless of the properties of R. Define a map $\gamma: \mathcal{F}(X, R) \rightarrow R$ by for each $f: X \rightarrow R, \gamma(f)=f(x)$. We first prove that this is a homomorphism of rings with identity.

Let $f, g \in \mathcal{F}(X, R)$. Then $\gamma(f \oplus g)=(f \oplus g)(x)=f(x)+g(x)=\gamma(f)+$ $\gamma(g)$ and $\gamma(f \odot g)=(f \odot g)(x)=f(x) g(x)=\gamma(f) \gamma(g)$, so it is a ring homomorphism. Additionally, if e is the multiplicative identity, then it must have $e(x)=1_{R}$, and so $\gamma(e)=1_{R}$, so it preserves the identity. Now, we must show surjective and injective.
To see that γ is surjective, let $r \in R$. Then we can define a function $f: X \rightarrow R$ by $f(x)=r$ for the only $x \in X$. Then, $\gamma(f)=f(x)=r$, and so γ is surjective. To see that it is injective, let f be any function such that $\gamma(f)=0$. Then $f(x)=0$, but the only element of X is x, so f is the constant function mapping all of X to zero, which is the additive identity of $\mathcal{F}(X, R)$. Thus, the kernel is trivial and γ is injective, and so is an isomorphism.

As $\mathcal{F}(X, R)$ is isomorphic to R, certainly R is a skew field if and only if $\mathcal{F}(X, R)$ is.

