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Homework 3 Solutions

(a) Assume that G is abelian. Then let (z,y), (2’,y') € G. Then (z,y)(2',y’) =
(',y')(z,y). Using the group law, this is (z2/,yy’) = (2'z,y'x),
which means that zz’ = 2’z and yy' = v'y, and so Gy,Gs are
both abelian. Conversely, assume that Gi1,Gs are abelian. Let
(z,y),(z',y") € G. Then (x,y)(z',y') = (zz',yy’). As G1,G2 are
abelian, this is just («'z,y'y) = («/,y)(z,y), and so G is abelian.

(b) This is false, as we can take G1 = Z/2Z and G2 = Z/3Z. Then
G 2~ Z/6Z, and G has normal subgroup {0, 3}, and so isn’t simple.

This is false, as if Rj, Ry are skew fields, look at the elements of R =
Ry x Ry given by (1g,,0r,) and (Og,, 1r,). Neither of these is zero in R.
However, their product is (Og,,0r,) = Or, and so they are zero divisors.
This implies that they cannot be units, and so not every element of R is
invertible.

(a) For this whole part of the problem, let f,g,h € F(X,G) and z € X
be arbitrary.
Closure: By definition, (f * ¢g)(x) = f(z)g(xz). As G is a group,
f(x)g(x) is an element of G. Thus, f * g defines a function by z +—
f(x)g(x) which takes elements of X to elements of G, and so fxg €
F(X, Q).
Associativity: We start with (fxg)*h(x). This is equal to (f(x)g(x))h(z),
by the definition of *. Now, as G is associative, this is equal to
f(z)(g(x)h(x)). By the definition of * again, we can write this as
(f*(gxh))(x),and so (f xg) x h = fx*(g*h).
Identity: Define the function e : X — G by taking every z € X
to eq, the identity in G. Now, we look at (f xe)(z) = f(x)e(x) =
f(@eg = f(z) = eqf(x) = e(x)f(x) = (e* f)(x). Thus, e is the
identity for the operation .
Inverses: Define the function f;,, by for all x € X, fin.(z) = f(x)~L.
We claim that this is the inverse function for f under x. We have
(Fino * &) = finn (@) (@) = [() " f(2) = ec = fla)f(z)") =
F(@) fino(x) = (f * finy)(2), which shows that this is the case.

Commutativity: Assume that G is an abelian group. Then (f *

9)(x) = f(x)g(z) = g(x)f(x) = (g * f)(z), and so * is commutative.
Now assume that * is commutative. For a € G, we define f, €



F(X,G) to be the function taking all z € X to a € G. Let a,b € G.
Then ab = fa(z)fo(z) = (fax fo) (@) = (fox fo) (@) = fo(z)fa(z) = ba,
and so G is abelian.

Let f,g € F(X,G) and let y € Y C X. Then ¢(f xg)(y) = (f *
9)(y) by the definition of ¢. This is then f(y)g(y), and then by the
definition of ¢ again, we have f(y) = ¢(f)(y) and g(y) = é(g)(y),
and so have f(y)g(y) = &(f)(y)®(g)(y). Then by the definition of x
on Y, we have (¢(f) *x ¢(g9))(y), and so, putting it all together, we

have that ¢(f+g)(y) = (#(f)*¢(g))(y). and so ¢ is a homomorphism.

The image of ¢ consists of all functions f : ¥ — G which can be
obtained by restricting a function f : X — G. Fix f: Y — G

f@) ze Y. Forally € Y,
e¢ xé¢Y

we have f(y) = f(y), and so ¢(f) = f. Thus, f is in the image
of ¢. As f was arbitrary, this shows that ¢ is surjective, and so
Im(¢) = F(Y, G).

The kernel of ¢ consists of those functions f : X — G which have
o(f) equal to the function ey : Y — G which maps all y € Y to eg.
This will be precisely the functions f : X — G which have f(y) = eq
for all y € Y, by the definition of ¢.

arbitrary. Then define f by f (x) = {

Assume that H < G. Then we want to show that F(X,H) <
F(X,G). Now, for any group, a subset is a subgroup if and only
if for all z,y in the subset, zy~! is in it as well. Let f,g € F(X, H).
Look at f * giny. Fix 2 € X. Then (f * gino)(z) = f(2)gino(2) =
f(x)g(x)™1, and as f(z) and g(z) are in H, which is a subgroup,
f(x)g(z)~! € H, and so f * giny defines a map X — H, thus telling
us that F(X, H) is a subgroup of F(X,G).

Assume that F(X, H) is a subgroup of F(X,G). Let a,b € H. We
want to show that ab= € H. Define f,, fy : X — H by f.(z) = a
and fp(z) = b for all x € X. Then f,, f, € F(X,H). Thus, in
particular, f, * fy ino € F(X, H). Now, evaluate on z, and we obtain
(fa * fb,inv)(x) = fa(x)fb,inv(z) = fa(x)fb(x)il - abil- NOW, as
fa* fo.inv € F(X, H), anything we get by evaluation is in H, and so
ab~' € H. So H is a subgroup of G.

Assume that H is normal in G. We want to show that for all g €
F(X,G) and all h € F(X, H), we have g * h * g;n, € H. To do so,
let g € F(X,G), h € F(X,H) and x € X arbitrary. Then look at
(9 * f * ginv). We must show that this maps into H. Evaluating on
x, we obtain (g * f * gino)(x) = g(x) f(x)g(z)~!. Now, as f(zr) € H
and g(z) € G, with H normal in G, we have g(x)f(z)g(xz)~* € H, as
desired.

Now, assume that F(X, H) is normal in F(X, G). Keep our definition
of f, from above for all a € G. Let g € G and h € H. We claim that



ghg™ € H. Fix x € X, and look at f; * fy * fhine. As F(X,H) is
a normal subgroup, we have that f; * fj, * fgino is a map X — H.
Evaluating on z, we get the element of H (fy * fr * fginv)(x) =
fo(@) frn(z) fo(x)~" = ghg™" € H, so H is normal in G.

(¢) Assume that H is a normal subgroup of G (and thus, by the previous

part, F(X, H) is a normal subgroup of F(X,G)). Then we claim
that there exists ¢ : F(X,G/H) — F(X,G)/F(X, H) which is an
isomorphism of groups.
We define ¢ as follows: let f: X — G/H be any function. Then for
each z, f(x) = gH for some g € G. We set ¢(f) to be the class of
functions f’ : X — G which contains the function f’(x) = g, with g
as above. We must prove that ¢ is well-defined, a homomorphism,
injective and surjective.

To see that it is well defined, let f : X — G/H, let € X and let
9,9 € G such that f(x) = gH = ¢’H. Then there are two candidates
for ¢(f), functions with f/(x) = g and f”(z) = ¢’ (defined point by
point on X). We must show that they are in the same class modulo
F(X,H). To do so, we must show that f’* f!/ is in the same class
as the identity map, because then f’ and f” have the same inverse

class. Now, (f* fI' (@) = f'(z)f"(z)"* = g¢'~". Now, g¢’ " is an
element of H, as gH = ¢'H = Hg' = Hg (with the last because H
is normal), and we can right multiply by ¢’~" to obtain the equation
H = Hgg ' = g¢ 'H. Thus, there exists a function o : X — H
such that f’« f!! = «a, and so f" and f” define the same class. So ¢
is a well defined function.

Next we must check that it is a homomorphism. Let f,¢g: X — G/H.
Then f % g is a function X — G/H. So ¢(f x g) defines a class in
the quotient F(X,G)/F(X,H). Let x € X. Set f(z) = aH and
g(x) = bH. Then (f * g)(x) = abH. Now, apply ¢ to f * g and
we get ¢(f x g)(x) is a function o : X — G such that a(z) = ab.
We want to show that « is in the same class as ¢(f) * ¢(g). Now,
(6(£)6(9))(x) = 6(f)(2)(9)(x) = ab, and so for all & € X, we have
o(f)(@)p(g)(z) = a(x) = ¢(f * g)(z), and so ¢ is a homomorphism.
Now we show that it is injective. Let f : X — G/H such that ¢(f)
is a function X — H. Let z € X, then f(z) = gH for some g € G,
and ¢(f)(z) = g. Now, ¢(f) is a function X — H if and only if
g € H, and so f(x) = H in the first place, which is the same thing as
f being the identity element in F(X,G/H), so the kernel is trivial,
and ¢ is injective.

Finally, we want to show that ¢ is surjective. Let f : X — G by any
function. Define f : X — G/H by for all z € X, f(z) = f(z)H.
Then ¢(f)(x) = f(z) for all z € X, and so ¢(f) = f. Thus, ¢ is

surjective, and so is an isomorphism.

8 First, we will show that if |X| > 1 then F(X, R) cannot be a skew field,



and then we will show that, if | X| = 1, then F(X, R) is a skew field if and
only if R is, which solves the problem.

Assume that | X| > 1. Let z,y € X with z # y. Then define f € F(X, R)
by f(x) = 1g and f(a) =0 for all @ € X with a # z and define g(y) = 1g
and g(a) = 0 for all @ € X not equal to a. Then for all a € X, we have
(f *g)(a) = f(a)g(a) = 0, because at least one of them is zero. Thus,
F(X, R) has zero divisors and cannot be a skew field.

Now assume that |X| = 1. Denote the single element of X by z. We will
in fact prove a stronger statement: F (X, R) is isomorphic to R, regardless
of the properties of R. Define a map v : F(X,R) — R by for each
f: X = R, ~v(f) = f(x). We first prove that this is a homomorphism of
rings with identity.

Let f,g € F(X,R). Then v(f & g) = (f ® g)(z) = f(z) + g(x) =(f) +
Y(g) and y(f © g) = (f © g)(x) = f(z)g(x) = ¥(f)¥(9), so it is a ring
homomorphism. Additionally, if e is the multiplicative identity, then it
must have e(z) = 1g, and so y(e) = 1g, so it preserves the identity. Now,
we must show surjective and injective.

To see that v is surjective, let » € R. Then we can define a function
f:+ X — Rby f(x) = r for the only x € X. Then, v(f) = f(z) = r,
and so 7 is surjective. To see that it is injective, let f be any function
such that v(f) = 0. Then f(z) = 0, but the only element of X is z, so
f is the constant function mapping all of X to zero, which is the additive
identity of F(X, R). Thus, the kernel is trivial and ~ is injective, and so
is an isomorphism.

As F(X, R) is isomorphic to R, certainly R is a skew field if and only if
F(X,R) is.



