1. (a) Assume that G is abelian. Then let $(x, y), (x', y') \in G$. Then $(x, y)(x', y') = (x', y')(x, y)$. Using the group law, this is $(xx', yy') = (x'x, y'x)$, which means that $xx' = x'x$ and $yy' = y'y$, and so G_1, G_2 are both abelian. Conversely, assume that G_1, G_2 are abelian. Let $(x, y), (x', y') \in G$. Then $(x, y)(x', y') = (xx', yy')$. As G_1, G_2 are abelian, this is just $(x'x, y'y) = (x', y')(x, y)$, and so G is abelian.

(b) This is false, as we can take $G = \mathbb{R}$, $x = 1$, and $y = 2$. If $(x, y) = (1, 2)$, then $(x, y)(1, 2) = (1, 4)$, which is not equal to $(1, 2)(1, 2) = (1, 4)$.

4. This is false, as if R_1, R_2 are skew fields, look at the elements of $R = R_1 \times R_2$ given by $(1_{R_1}, 0_{R_2})$ and $(0_{R_1}, 1_{R_2})$. Neither of these is zero in R. However, their product is $(0_{R_1}, 0_{R_2}) = 0_R$, and so they are zero divisors. This implies that they cannot be units, and so not every element of R is invertible.

5. (a) For this whole part of the problem, let $f, g, h \in \mathcal{F}(X, G)$ and $x \in X$ be arbitrary.

Closure: By definition, $(f * g)(x) = f(x)g(x)$. As G is a group, $f(x)g(x)$ is an element of G. Thus, $f * g$ defines a function by $x \mapsto f(x)g(x)$ which takes elements of X to elements of G, and so $f * g \in \mathcal{F}(X, G)$.

Associativity: We start with $(f * g) * h(x)$. This is equal to $(f(x)g(x))h(x)$, by the definition of $*$. Now, as G is associative, this is equal to $f(x)(g(x)h(x))$. By the definition of $*$ again, we can write this as $(f * (g * h))(x)$, and so $(f * g) * h = f * (g * h)$.

Identity: Define the function $e : X \to G$ by taking every $x \in X$ to e_G, the identity in G. Now, we look at $(f * e)(x) = f(x)e(x) = f(x)e_G = f(x) = e_Gf(x) = e(x)f(x) = (e * f)(x)$. Thus, e is the identity for the operation $*$.

Inverses: Define the function f_{inv} by for all $x \in X$, $f_{inv}(x) = f(x)^{-1}$. We claim that this is the inverse function for f under $*$. We have $(f_{inv} * f)(x) = f_{inv}(x)f(x) = f(x)^{-1}f(x) = e_G = f(x)f(x)^{-1} = f(x)f_{inv}(x) = (f * f_{inv})(x)$, which shows that this is the case.

Commutativity: Assume that G is an abelian group. Then $(f * g)(x) = f(x)g(x) = g(x)f(x) = (g * f)(x)$, and so $*$ is commutative.

Now assume that $*$ is commutative. For $a \in G$, we define $f_a \in \mathcal{F}(X, G)$.
\[F(X, G) \] to be the function taking all \(x \in X \) to \(a \in G \). Let \(a, b \in G \). Then \(ab = f_a(x)f_b(x) = (f_a * f_b)(x) = f_{ab}(x) = f_b(x)f_a(x) = ba \), and so \(G \) is abelian.

(b) Let \(f, g \in F(X, G) \) and let \(y \in Y \subset X \). Then \(\phi(f * g)(y) = (f * g)(y) \) by the definition of \(\phi \). This is then \(f(y)g(y) \), and then by the definition of \(\phi \) again, we have \(f(y) = \phi(f)(y) \) and \(g(y) = \phi(g)(y) \), and so have \(f(y)g(y) = \phi(f)(y)\phi(g)(y) \). Then by the definition of \(\ast \) on \(Y \), we have \(\phi(f * \phi(g))(y) \), and so, putting it all together, we have that \(\phi(f * g)(y) = (\phi(f) * \phi(g))(y) \), and so \(\phi \) is a homomorphism.

(c) The image of \(\phi \) consists of all functions \(f : Y \to G \) which can be obtained by restricting a function \(\tilde{f} : X \to G \). Fix \(f : Y \to G \) arbitrary. Then define \(\tilde{f} \) by \(\tilde{f}(x) = \begin{cases} f(x) & x \in Y, \\ e_G & x \notin Y. \end{cases} \) For all \(y \in Y \), we have \(f(y) = \tilde{f}(y) \), and so \(\phi(\tilde{f}) = f \). Thus, \(\tilde{f} \) is in the image of \(\phi \). As \(\tilde{f} \) was arbitrary, this shows that \(\phi \) is surjective, and so \(\text{Im}(\phi) = F(Y, G) \).

The kernel of \(\phi \) consists of those functions \(f : X \to G \) which have \(\phi(f) \) equal to the function \(e_Y : Y \to G \) which maps all \(y \in Y \) to \(e_G \). This will be precisely the functions \(f : X \to G \) which have \(f(y) = e_G \) for all \(y \in Y \), by the definition of \(\phi \).

6 (a) Assume that \(H < G \). Then we want to show that \(F(X, H) < F(X, G) \). Now, for any group, a subset is a subgroup if and only if for all \(x, y \) in the subset, \(xy^{-1} \) is in it as well. Let \(f, g \in F(X, H) \). Look at \(f * g_{inv} \). Fix \(x \in X \). Then \((f * g_{inv})(x) = f(x)g_{inv}(x) = f(x)g(x)^{-1} \), and as \(f(x) \) and \(g(x) \) are in \(H \), which is a subgroup, \(f(x)g(x)^{-1} \in H \), and so \(f * g_{inv} \) defines a map \(X \to H \), thus telling us that \(F(X, H) \) is a subgroup of \(F(X, G) \).

Assume that \(F(X, H) \) is a subgroup of \(F(X, G) \). Let \(a, b \in H \). We want to show that \(ab^{-1} \in H \). Define \(f_a, f_b : X \to H \) by \(f_a(x) = a \) and \(f_b(x) = b \) for all \(x \in X \). Then \(f_a, f_b \in F(X, H) \). Thus, in particular, \(f_a * f_b \in F(X, H) \). Now, evaluate on \(x \), and we obtain \((f_a * f_b)(x) = f_a(x)f_b(x) = f_a(x)f_b(x)^{-1} = ab^{-1} \). Now, as \(f_a * f_b \in F(X, H) \), anything we get by evaluation is in \(H \), and so \(ab^{-1} \in H \). So \(H \) is a subgroup of \(G \).

(b) Assume that \(H \) is normal in \(G \). We want to show that for all \(g \in F(X, G) \) and all \(h \in F(X, H) \), we have \(g * h * g_{inv} \in H \). To do so, let \(g \in F(X, G) \), \(h \in F(X, H) \) and \(x \in X \) arbitrary. Then look at \((g * f * g_{inv}) \). We must show that this maps into \(H \). Evaluating on \(x \), we obtain \((g * f * g_{inv})(x) = g(x)f(x)g(x)^{-1} \). Now, as \(f(x) \in H \) and \(g(x) \in G \), with \(H \) normal in \(G \), we have \(g(x)f(x)g(x)^{-1} \in H \), as desired.

Now, assume that \(F(X, H) \) is normal in \(F(X, G) \). Keep our definition of \(f_a \) from above for all \(a \in G \). Let \(g \in G \) and \(h \in H \). We claim that
First, we will show that if f functions x a normal subgroup, we have that f is normal in G. Evaluating on x, we get the element of H \(f(x) = f_g(x)f_h(x)f_{g,h}(x)^{-1} = ghg^{-1} \in H \), so H is normal in G.

(c) Assume that H is a normal subgroup of G (and thus, by the previous part, $\mathcal{F}(X,H)$ is a normal subgroup of $\mathcal{F}(X,G)$). Then we claim that there exists $\phi : \mathcal{F}(X,G/H) \rightarrow \mathcal{F}(X,G)/\mathcal{F}(X,H)$ which is an isomorphism of groups.

We define ϕ as follows: let $f : X \rightarrow G/H$ be any function. Then for each x, $f(x) = gH$ for some $g \in G$. We set $\phi(f)$ to be the class of functions $f': X \rightarrow G$ which contains the function $f'(x) = g$, with g as above. We must prove that ϕ is well-defined, a homomorphism, injective and surjective.

To see that it is well defined, let $f : X \rightarrow G/H$, let $x \in X$ and let $g, g' \in G$ such that $f(x) = gH = g'H$. Then there are two candidates for $\phi(f)$, functions with $f'(x) = g$ and $f''(x) = g'$ (defined point by point on X). We must show that they are in the same class modulo $\mathcal{F}(X,H)$. To do so, we must show that $f' \ast f''^{-1}$ is in the same class as the identity map, because then f' and f'' have the same inverse class. Now, $(f' \ast f''^{-1})(x) = f'(x)f''(x)^{-1} = gg'^{-1}$. Now, gg'^{-1} is an element of H, as $gH = g'H = Hg' = Hg$ (with the last because H is normal), and we can right multiply by g'^{-1} to obtain the equation $H = Hgg'^{-1} = gg'^{-1}H$. Thus, there exists a function $\alpha : X \rightarrow H$ such that $f' \ast f''^{-1} = \alpha$, and so f' and f'' define the same class. So ϕ is a well defined function.

Next we must check that it is a homomorphism. Let $f, g : X \rightarrow G/H$. Then $f \ast g$ is a function $X \rightarrow G/H$. So $\phi(f \ast g)$ defines a class in the quotient $\mathcal{F}(X,G)/\mathcal{F}(X,H)$. Let $x \in X$. Set $f(x) = aH$ and $g(x) = bH$. Then $(f \ast g)(x) = abH$. Now, apply ϕ to $f \ast g$ and we get $\phi(f \ast g)(x)$ is a function $\alpha : X \rightarrow G$ such that $\alpha(x) = ab$. We want to show that α is in the same class as $\phi(f) \ast \phi(g)$.

Now, $(\phi(f) \ast \phi(g))(x) = \phi(f(x))\phi(g(x)) = ab$, and so for all $x \in X$, we have $\phi(f)(x)\phi(g)(x) = \alpha(x) = \phi(f \ast g)(x)$, and so ϕ is a homomorphism.

Now we show that it is injective. Let $f : X \rightarrow G/H$ such that $\phi(f)$ is a function $X \rightarrow H$. Let $x \in X$, then $f(x) = gH$ for some $g \in G$, and $\phi(f)(x) = g$. Now, $\phi(f)$ is a function $X \rightarrow H$ if and only if $g \in H$, and so $f(x) = H$ in the first place, which is the same thing as f being the identity element in $\mathcal{F}(X,G/H)$, so the kernel is trivial, and ϕ is injective.

Finally, we want to show that ϕ is surjective. Let $f : X \rightarrow G$ by any function. Define $\tilde{f} : X \rightarrow G/H$ by for all $x \in X$, $\tilde{f}(x) = f(x)H$. Then $\phi(\tilde{f})(x) = f(x)$ for all $x \in X$, and so $\phi(\tilde{f}) = f$. Thus, ϕ is surjective, and so is an isomorphism.

8 First, we will show that if $|X| > 1$ then $\mathcal{F}(X,R)$ cannot be a skew field,
and then we will show that, if \(|X| = 1\), then \(\mathcal{F}(X, R)\) is a skew field if and only if \(R\) is, which solves the problem.

Assume that \(|X| > 1\). Let \(x, y \in X\) with \(x \neq y\). Then define \(f \in \mathcal{F}(X, R)\) by \(f(x) = 1_R\) and \(f(a) = 0\) for all \(a \in X\) with \(a \neq x\) and define \(g(y) = 1_R\) and \(g(a) = 0\) for all \(a \in X\) not equal to \(a\). Then for all \(a \in X\), we have \((f * g)(a) = f(a)g(a) = 0\), because at least one of them is zero. Thus, \(\mathcal{F}(X, R)\) has zero divisors and cannot be a skew field.

Now assume that \(|X| = 1\). Denote the single element of \(X\) by \(x\). We will in fact prove a stronger statement: \(\mathcal{F}(X, R)\) is isomorphic to \(R\), regardless of the properties of \(R\). Define a map \(\gamma : \mathcal{F}(X, R) \rightarrow R\) by for each \(f : X \rightarrow R\), \(\gamma(f) = f(x)\). We first prove that this is a homomorphism of rings with identity.

Let \(f, g \in \mathcal{F}(X, R)\). Then \(\gamma(f \oplus g) = (f \oplus g)(x) = f(x) + g(x) = \gamma(f) + \gamma(g)\) and \(\gamma(f \odot g) = (f \odot g)(x) = f(x)g(x) = \gamma(f)\gamma(g)\), so it is a ring homomorphism. Additionally, if \(e\) is the multiplicative identity, then it must have \(e(x) = 1_R\), and so \(\gamma(e) = 1_R\), so it preserves the identity. Now, we must show surjective and injective.

To see that \(\gamma\) is surjective, let \(r \in R\). Then we can define a function \(f : X \rightarrow R\) by \(f(x) = r\) for the only \(x \in X\). Then, \(\gamma(f) = f(x) = r\), and so \(\gamma\) is surjective. To see that it is injective, let \(f\) be any function such that \(\gamma(f) = 0\). Then \(f(x) = 0\), but the only element of \(X\) is \(x\), so \(f\) is the constant function mapping all of \(X\) to zero, which is the additive identity of \(\mathcal{F}(X, R)\). Thus, the kernel is trivial and \(\gamma\) is injective, and so is an isomorphism.

As \(\mathcal{F}(X, R)\) is isomorphic to \(R\), certainly \(R\) is a skew field if and only if \(\mathcal{F}(X, R)\) is.