Homework 7 Solutions

- 1 a Look at the left hand side of the equation. It gives $\dim V_2 \dim V_1 \dim V_3$. We want to conclude that this is zero. We note that we have $f_1: V_1 \to V_2$ and $f_2: V_2 \to V_3$, with f_1 injective and f_2 surjectve. The rank-nullity theorem says that $\dim V_1 = \dim \ker f_1 + \dim \inf f_1$, and that $\dim V_2 = \dim \ker f_2 + \dim \inf f_2$. Now, using injectivity and surjectivity, we get $\dim V_1 = \dim \inf f_1$ and $\dim V_2 = \dim \ker f_2 + \dim V_3$. Substituting back, we obtain $\dim \ker f_2 + \dim V_3 \dim \inf f_1 \dim V_3 = \dim \ker f_2 \dim \inf f_1$. But by the hypothesis of the problem, this is zero, as desired.
 - b Fix some *n*. Then we have $\sum_{i=1}^{n} (-1)^{i} \dim V_{i}$. We can write this as $-\dim V_{1} + \sum_{i=2}^{n-1} \dim V_{i} + (-1)^{n} \dim V_{n}$. The Rank-Nullity theorem says that for V_{i} with $i \neq n$, we have $\dim V_{i} = \dim \ker f_{i} + \dim \inf f_{i}$, and that $\dim \ker f_{1} = 0$. Thus, this becomes $\dim \inf f_{1} + \sum_{i=2}^{n-1} (-1)^{i} (\dim \ker f_{i} + \dim \inf f_{i}) + (-1)^{n} \dim V_{n}$. By the hypothesis, the middle part is a telescoping sum, and so this becomes $\dim \inf f_{1} - \dim \ker f_{2} + (-1)^{n-1} \dim V_{n} + (-1)^{n} \dim V_{n}$. The hypothesis for the problem causes the first two to cancel, and the last two just have opposite signs, and so cancel. Thus, we obtain $\sum_{i=1}^{n} (-1)^{i} \dim V_{i} = 0$.
 - a Let M be a finitely generated R module. Then by problem 8c on Homework 5, $\hom_R(M, N)$ is finitely generated if M and N are. Note that $M^* = \hom_R(M, R)$. By hypothesis, M is finitely generated, and R is generated by 1_R , and so is finitely generated. Thus, M^* is finitely generated.

3

b So now we assume that M is finitely generated and free. This means that it has a linearly independent generating set m_1, \ldots, m_n . To see that M^* is also free, we must merely show that it also has one. Define $m_i^*: M \to R$ to be the function which takes $\sum_{i=1}^n a_i m_i$ to a_i . We have three things to show: that the m_i are homomorphisms, that they are linearly independent, and that they are spanning.

To see that they are homomorphisms, we let $m, n \in M$ and $r, s \in R$ arbitrary with $m = \sum a_i m_i$ and $n = \sum b_i m_i$. Then $rm + sn = \sum ra_i m_i + sb_i m_i = \sum (ra_i + sb_i)m_i$. So $m_i^*(rm + sn) = ra_i + sb_i$. But also, $rm_i^*(m) + sm_i^*(n) = ra_i + sb_i$, and so the m_i^* are homomorphisms. For linear independence, let $f = \sum a_i m_i^* = 0$, and we need to show that $a_i = 0$ for all *i*. For each *j*, we have $f(m_j) = \sum a_i m_i^*(m_j) = \sum a_i \delta_{ij} = a_j = 0$. Thus, for each *j*, $a_j = 0$, so we have linear independence.

To see that it is a spanning set, let $f \in M^*$ arbitrary. Set $a_i = f(m_i)$. Claim: $f = \sum a_i m_i^*$. To justify this, take $m \in M$ arbitrary. We want to show that $\sum a_i m_i^*(m) = f(m)$. Now, we can write $m = \sum b_i m_i$. So then, as f is linear, $f(m) = f(\sum b_i m_i) = \sum b_i f(m_i) = \sum b_i a_i$. However, also, $m_i^*(m) = b_i$, and so $\sum a_i m_i^*(m) = \sum a_i b_i$. The two are equal, and so $f = \sum a_i m_i^*$, as desired.

- 4 a So see that $\phi: M \to (M^*)^*$ is a homomorphism of R-modules, we need that for all $m, n \in M$ and $r, s \in R$, $\phi(rm+sn) = r\phi(m)+s\phi(n)$. So let $m, n \in M$ and $r, s \in R$ be arbitrary. We need to show that ϕ_{rm+sn} and $r\phi_m + s\phi_n$ are equal. These are both maps $M^* \to R$, so it suffices to show that they are equal on any homomorphism $f: M \to R$. So fix $f: M \to R$ arbitrary. Then $\phi_{rm+sn}(f) =$ $f(rm+sn) = rf(m) + sf(n) = r\phi_m(f) + s\phi_n(f)$, as desired, and so we have a homomorphism.
 - b False. Let $R = \mathbb{Z}/4\mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z}$. Then M^* and $(M^*)^*$ are also isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and the map ϕ is an ismorphism. However, M is not a free R-module, because for all $x \in M$, 2x = 0, with $2 \neq 0$ in R.
- 6 Denote by ϕ the map $\operatorname{hom}(L, M) \times \operatorname{hom}(M, N) \to \operatorname{hom}(L, N)$ by $(f, g) \mapsto g \circ f$. Now, fix $f \in \operatorname{hom}(L, M)$ and let $g_1, g_2 \in \operatorname{hom}(M, N)$, $r, s \in R$ arbitrary. To show that ϕ is linear in g, we must show that $\phi(f, rg_1 + sg_n) = r\phi(f, g_1) + s\phi(f, g_2)$. Starting from the first, we have $(rg_1 + sg_2) \circ f$. Now this is defined to be $rg_1 \circ f + sg_2 \circ f$, which is $r(g_1 \circ f) + s(g_2 \circ f) = r\phi(f, g_1) + s\phi(f, g_2)$. Similarly, if $f_1, f_2 \in \operatorname{hom}(L, M)$ and $g \in \operatorname{hom}(M, N)$, we must show that $\phi(rf_1 + sf_2, g) = r\phi(f_1, g) + s\phi(f_2, g)$, which proceeds by the same argument.
- 7 a Let $y = (y_1, \ldots, y_m)$ and $z = (z_1, \ldots, z_m)$ be two solutions and let $r \in R$ arbitrary. We must show that ry and y z are solutions. The equations are $\sum_j a_{ij}x_j = 0$, one for each *i*. Now, we plug in ry, and obtain $\sum_j a_{ij}ry_j = r\sum_j a_{ij}y_j = r0 = 0$, and so ry is also a solution. Now we try y-z, and obtain $\sum_j a_{ij}(y_j-z_j) = \sum_j a_{ij}y_j \sum_j a_{ij}z_j = 0 0 = 0$. Thus, we have a submodule.
 - b Let $x = (x_1, \ldots, x_m)$. Then, $f(x) = (\sum_j a_{1j}x_j, \ldots, \sum_j a_{nj}x_j)$. So, let $y = (y_1, \ldots, y_m)$ be in S. Then $f(y) = (0, \ldots, 0)$, and so $y \in \ker f$. Similarly, if $y \in \ker f$, then f(x) = 0, and so we have $\sum_j a_{ij}y_j = 0$ for all *i*, and so *y* is a solution to the system of equations, and so lies in S. Thus, $S = \ker f$.