
Homework 7 Solutions

1 a Look at the left hand side of the equation. It gives dimV2−dimV1−
dimV3. We want to conclude that this is zero. We note that we have
f1 : V1 → V2 and f2 : V2 → V3, with f1 injective and f2 surjectve.
The rank-nullity theorem says that dimV1 = dim ker f1 + dim imf1,
and that dimV2 = dim ker f2 + dim imf2. Now, using injectivity and
surjectivity, we get dimV1 = dim imf1 and dimV2 = dim ker f2 +
dimV3. Substituting back, we obtain dim ker f2+dimV3−dim imf1−
dimV3 = dim ker f2 − dim imf1. But by the hypothesis of the prob-
lem, this is zero, as desired.

b Fix some n. Then we have
∑n

i=1(−1)i dimVi. We can write this
as −dimV1 +

∑n−1
i=2 dimVi + (−1)n dimVn. The Rank-Nullity the-

orem says that for Vi with i 6= n, we have dimVi = dim ker fi +
dim imfi, and that dim ker f1 = 0. Thus, this becomes dim imf1 +∑n−1

i=2 (−1)i(dim ker fi + dim imfi) + (−1)n dimVn. By the hypoth-
esis, the middle part is a telescoping sum, and so this becomes
dim imf1 − dim ker f2 + (−1)n−1 dimVn + (−1)n dimVn. The hy-
pothesis for the problem causes the first two to cancel, and the
last two just have opposite signs, and so cancel. Thus, we obtain∑n

i=1(−1)i dimVi = 0.

3 a Let M be a finitely generated R module. Then by problem 8c on
Homework 5, homR(M,N) is finitely generated if M and N are. Note
that M∗ = homR(M,R). By hypothesis, M is finitely generated, and
R is generated by 1R, and so is finitely generated. Thus, M∗ is finitely
generated.

b So now we assume that M is finitely generated and free. This means
that it has a linearly independent generating set m1, . . . ,mn. To see
that M∗ is also free, we must merely show that it also has one. Define
m∗

i : M → R to be the function which takes
∑n

i=1 aimi to ai. We
have three things to show: that the mi are homomorphisms, that
they are linearly independent, and that they are spanning.
To see that they are homomorphisms, we let m,n ∈ M and r, s ∈ R
arbitrary with m =

∑
aimi and n =

∑
bimi. Then rm + sn =∑

raimi + sbimi =
∑

(rai + sbi)mi. So m∗
i (rm + sn) = rai + sbi.

But also, rm∗
i (m) + sm∗

i (n) = rai + sbi, and so the m∗
i are homo-

morphisms.
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For linear independence, let f =
∑
aim

∗
i = 0, and we need to show

that ai = 0 for all i. For each j, we have f(mj) =
∑
aim

∗
i (mj) =∑

aiδij = aj = 0. Thus, for each j, aj = 0, so we have linear
independence.
To see that it is a spanning set, let f ∈M∗ arbitrary. Set ai = f(mi).
Claim: f =

∑
aim

∗
i . To justify this, take m ∈M arbitrary. We want

to show that
∑
aim

∗
i (m) = f(m). Now, we can write m =

∑
bimi.

So then, as f is linear, f(m) = f(
∑
bimi) =

∑
bif(mi) =

∑
biai.

However, also, m∗
i (m) = bi, and so

∑
aim

∗
i (m) =

∑
aibi. The two

are equal, and so f =
∑
aim

∗
i , as desired.

4 a So see that φ : M → (M∗)∗ is a homomorphism of R-modules, we
need that for all m,n ∈M and r, s ∈ R, φ(rm+sn) = rφ(m)+sφ(n).
So let m,n ∈ M and r, s ∈ R be arbitrary. We need to show that
φrm+sn and rφm + sφn are equal. These are both maps M∗ → R,
so it suffices to show that they are equal on any homomorphism
f : M → R. So fix f : M → R arbitrary. Then φrm+sn(f) =
f(rm+ sn) = rf(m) + sf(n) = rφm(f) + sφn(f), as desired, and so
we have a homomorphism.

b False. Let R = Z/4Z and M = Z/2Z. Then M∗ and (M∗)∗ are also
isomorphic to Z/2Z, and the map φ is an ismorphism. However, M
is not a free R-module, because for all x ∈M , 2x = 0, with 2 6= 0 in
R.

6 Denote by φ the map hom(L,M)×hom(M,N)→ hom(L,N) by (f, g) 7→
g ◦ f . Now, fix f ∈ hom(L,M) and let g1, g2 ∈ hom(M,N), r, s ∈ R
arbitrary. To show that φ is linear in g, we must show that φ(f, rg1 +
sgn) = rφ(f, g1)+sφ(f, g2). Starting from the first, we have (rg1+sg2)◦f .
Now this is defined to be rg1 ◦ f + sg2 ◦ f , which is r(g1 ◦ f) + s(g2 ◦ f) =
rφ(f, g1)+sφ(f, g2). Similarly, if f1, f2 ∈ hom(L,M) and g ∈ hom(M,N),
we must show that φ(rf1 + sf2, g) = rφ(f1, g) + sφ(f2, g), which proceeds
by the same argument.

7 a Let y = (y1, . . . , ym) and z = (z1, . . . , zm) be two solutions and let
r ∈ R arbitrary. We must show that ry and y− z are solutions. The
equations are

∑
j aijxj = 0, one for each i. Now, we plug in ry, and

obtain
∑

j aijryj = r
∑

j aijyj = r0 = 0, and so ry is also a solution.
Now we try y−z, and obtain

∑
j aij(yj−zj) =

∑
j aijyj−

∑
j aijzj =

0− 0 = 0. Thus, we have a submodule.

b Let x = (x1, . . . , xm). Then, f(x) = (
∑

j a1jxj , . . . ,
∑

j anjxj). So,
let y = (y1, . . . , ym) be in S. Then f(y) = (0, . . . , 0), and so y ∈ ker f .
Similarly, if y ∈ ker f , then f(x) = 0, and so we have

∑
j aijyj = 0

for all i, and so y is a solution to the system of equations, and so lies
in S. Thus, S = ker f .
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