Homework 7 Solutions

1 a Look at the left hand side of the equation. It gives $\operatorname{dim} V_{2}-\operatorname{dim} V_{1}-$ $\operatorname{dim} V_{3}$. We want to conclude that this is zero. We note that we have $f_{1}: V_{1} \rightarrow V_{2}$ and $f_{2}: V_{2} \rightarrow V_{3}$, with f_{1} injective and f_{2} surjectve. The rank-nullity theorem says that $\operatorname{dim} V_{1}=\operatorname{dim} \operatorname{ker} f_{1}+\operatorname{dimim} f_{1}$, and that $\operatorname{dim} V_{2}=\operatorname{dim} \operatorname{ker} f_{2}+\operatorname{dim} \operatorname{im} f_{2}$. Now, using injectivity and surjectivity, we get $\operatorname{dim} V_{1}=\operatorname{dimim} f_{1}$ and $\operatorname{dim} V_{2}=\operatorname{dim} \operatorname{ker} f_{2}+$ $\operatorname{dim} V_{3}$. Substituting back, we obtain $\operatorname{dim} \operatorname{ker} f_{2}+\operatorname{dim} V_{3}-\operatorname{dim} \operatorname{im} f_{1}-$ $\operatorname{dim} V_{3}=\operatorname{dim} \operatorname{ker} f_{2}-\operatorname{dim} \operatorname{im} f_{1}$. But by the hypothesis of the problem, this is zero, as desired.
b Fix some n. Then we have $\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} V_{i}$. We can write this as $-\operatorname{dim} V_{1}+\sum_{i=2}^{n-1} \operatorname{dim} V_{i}+(-1)^{n} \operatorname{dim} V_{n}$. The Rank-Nullity theorem says that for V_{i} with $i \neq n$, we have $\operatorname{dim} V_{i}=\operatorname{dim} \operatorname{ker} f_{i}+$ $\operatorname{dimim} f_{i}$, and that $\operatorname{dim} \operatorname{ker} f_{1}=0$. Thus, this becomes $\operatorname{dimim} f_{1}+$ $\sum_{i=2}^{n-1}(-1)^{i}\left(\operatorname{dim} \operatorname{ker} f_{i}+\operatorname{dimim} f_{i}\right)+(-1)^{n} \operatorname{dim} V_{n}$. By the hypothesis, the middle part is a telescoping sum, and so this becomes $\operatorname{dimim} f_{1}-\operatorname{dim} \operatorname{ker} f_{2}+(-1)^{n-1} \operatorname{dim} V_{n}+(-1)^{n} \operatorname{dim} V_{n}$. The hypothesis for the problem causes the first two to cancel, and the last two just have opposite signs, and so cancel. Thus, we obtain $\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} V_{i}=0$.

3 a Let M be a finitely generated R module. Then by problem 8c on Homework $5, \operatorname{hom}_{R}(M, N)$ is finitely generated if M and N are. Note that $M^{*}=\operatorname{hom}_{R}(M, R)$. By hypothesis, M is finitely generated, and R is generated by 1_{R}, and so is finitely generated. Thus, M^{*} is finitely generated.
b So now we assume that M is finitely generated and free. This means that it has a linearly independent generating set m_{1}, \ldots, m_{n}. To see that M^{*} is also free, we must merely show that it also has one. Define $m_{i}^{*}: M \rightarrow R$ to be the function which takes $\sum_{i=1}^{n} a_{i} m_{i}$ to a_{i}. We have three things to show: that the m_{i} are homomorphisms, that they are linearly independent, and that they are spanning.
To see that they are homomorphisms, we let $m, n \in M$ and $r, s \in R$ arbitrary with $m=\sum a_{i} m_{i}$ and $n=\sum b_{i} m_{i}$. Then $r m+s n=$ $\sum r a_{i} m_{i}+s b_{i} m_{i}=\sum\left(r a_{i}+s b_{i}\right) m_{i}$. So $m_{i}^{*}(r m+s n)=r a_{i}+s b_{i}$. But also, $r m_{i}^{*}(m)+s m_{i}^{*}(n)=r a_{i}+s b_{i}$, and so the m_{i}^{*} are homomorphisms.

For linear independence, let $f=\sum a_{i} m_{i}^{*}=0$, and we need to show that $a_{i}=0$ for all i. For each j, we have $f\left(m_{j}\right)=\sum a_{i} m_{i}^{*}\left(m_{j}\right)=$ $\sum a_{i} \delta_{i j}=a_{j}=0$. Thus, for each $j, a_{j}=0$, so we have linear independence.
To see that it is a spanning set, let $f \in M^{*}$ arbitrary. Set $a_{i}=f\left(m_{i}\right)$. Claim: $f=\sum a_{i} m_{i}^{*}$. To justify this, take $m \in M$ arbitrary. We want to show that $\sum a_{i} m_{i}^{*}(m)=f(m)$. Now, we can write $m=\sum b_{i} m_{i}$. So then, as f is linear, $f(m)=f\left(\sum b_{i} m_{i}\right)=\sum b_{i} f\left(m_{i}\right)=\sum b_{i} a_{i}$. However, also, $m_{i}^{*}(m)=b_{i}$, and so $\sum a_{i} m_{i}^{*}(m)=\sum a_{i} b_{i}$. The two are equal, and so $f=\sum a_{i} m_{i}^{*}$, as desired.

4 a So see that $\phi: M \rightarrow\left(M^{*}\right)^{*}$ is a homomorphism of R-modules, we need that for all $m, n \in M$ and $r, s \in R, \phi(r m+s n)=r \phi(m)+s \phi(n)$. So let $m, n \in M$ and $r, s \in R$ be arbitrary. We need to show that $\phi_{r m+s n}$ and $r \phi_{m}+s \phi_{n}$ are equal. These are both maps $M^{*} \rightarrow R$, so it suffices to show that they are equal on any homomorphism $f: M \rightarrow R$. So fix $f: M \rightarrow R$ arbitrary. Then $\phi_{r m+s n}(f)=$ $f(r m+s n)=r f(m)+s f(n)=r \phi_{m}(f)+s \phi_{n}(f)$, as desired, and so we have a homomorphism.
b False. Let $R=\mathbb{Z} / 4 \mathbb{Z}$ and $M=\mathbb{Z} / 2 \mathbb{Z}$. Then M^{*} and $\left(M^{*}\right)^{*}$ are also isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$, and the map ϕ is an ismorphism. However, M is not a free R-module, because for all $x \in M, 2 x=0$, with $2 \neq 0$ in R.

6 Denote by ϕ the map $\operatorname{hom}(L, M) \times \operatorname{hom}(M, N) \rightarrow \operatorname{hom}(L, N)$ by $(f, g) \mapsto$ $g \circ f$. Now, fix $f \in \operatorname{hom}(L, M)$ and let $g_{1}, g_{2} \in \operatorname{hom}(M, N), r, s \in R$ arbitrary. To show that ϕ is linear in g, we must show that $\phi\left(f, r g_{1}+\right.$ $\left.s g_{n}\right)=r \phi\left(f, g_{1}\right)+s \phi\left(f, g_{2}\right)$. Starting from the first, we have $\left(r g_{1}+s g_{2}\right) \circ f$. Now this is defined to be $r g_{1} \circ f+s g_{2} \circ f$, which is $r\left(g_{1} \circ f\right)+s\left(g_{2} \circ f\right)=$ $r \phi\left(f, g_{1}\right)+s \phi\left(f, g_{2}\right)$. Similarly, if $f_{1}, f_{2} \in \operatorname{hom}(L, M)$ and $g \in \operatorname{hom}(M, N)$, we must show that $\phi\left(r f_{1}+s f_{2}, g\right)=r \phi\left(f_{1}, g\right)+s \phi\left(f_{2}, g\right)$, which proceeds by the same argument.

7 a Let $y=\left(y_{1}, \ldots, y_{m}\right)$ and $z=\left(z_{1}, \ldots, z_{m}\right)$ be two solutions and let $r \in R$ arbitrary. We must show that $r y$ and $y-z$ are solutions. The equations are $\sum_{j} a_{i j} x_{j}=0$, one for each i. Now, we plug in $r y$, and obtain $\sum_{j} a_{i j} r y_{j}=r \sum_{j} a_{i j} y_{j}=r 0=0$, and so $r y$ is also a solution. Now we try $y-z$, and obtain $\sum_{j} a_{i j}\left(y_{j}-z_{j}\right)=\sum_{j} a_{i j} y_{j}-\sum_{j} a_{i j} z_{j}=$ $0-0=0$. Thus, we have a submodule.
b Let $x=\left(x_{1}, \ldots, x_{m}\right)$. Then, $f(x)=\left(\sum_{j} a_{1 j} x_{j}, \ldots, \sum_{j} a_{n j} x_{j}\right)$. So, let $y=\left(y_{1}, \ldots, y_{m}\right)$ be in S. Then $f(y)=(0, \ldots, 0)$, and so $y \in \operatorname{ker} f$. Similarly, if $y \in \operatorname{ker} f$, then $f(x)=0$, and so we have $\sum_{j} a_{i j} y_{j}=0$ for all i, and so y is a solution to the system of equations, and so lies in S. Thus, $S=\operatorname{ker} f$.

