Homework 8 Solutions

2 (a) Let $r \in R$. First assume that $x-r \mid f(x)$. Then we can write $f(x)=$ $(x-r) q(x)$, and so $f(r)=(r-r) q(r)=0 q(r)=0$. Now assume that $f(r)=0$. Then we can write $f(x)=(x-r) q(x)+p(x)$, and $\operatorname{deg} p(x)<\operatorname{deg}(x-r)=1$, and so $\operatorname{deg} p(x)=0$, so $p(x)=p$ is a constant. So $f(r)=(r-r) q(r)+p=0 q(r)+p=p$, but $f(r)=0$, so $p=0$. Thus, $f(x)=(x-r) q(x)$, and so $x-r \mid f(x)$.
(b) Let $r_{1}, \ldots, r_{m} \in R$ distinct. First assume that $\left(x-r_{1}\right) \ldots(x-$ $\left.r_{m}\right) \mid f(x)$. Then $f(x)=\left(x-r_{1}\right) \ldots\left(x-r_{m}\right) q(x)$, and so $f\left(r_{i}\right)=0$ for all i. Now assume that $f\left(r_{i}\right)=0$ for all i. We proceed by induction. The first step was previous part. Now assume that this holds true for $m=k$, and we want to show it for $k+1$. As $f\left(r_{1}\right)=\ldots=f\left(r_{k}\right)=0$, we have that $f(x)=\left(x-r_{1}\right) \ldots\left(x-r_{k}\right) q(x)$, by hypothesis. However, we also have that $f\left(r_{k+1}\right)=0$, and so $\left.f\left(r_{k+1}\right)=\left(r_{k+1}\right)-r_{1}\right) \ldots\left(r_{k+1}-r_{k}\right) q\left(r_{k+1}\right)=0$. But $r_{k+1}-r_{i} \neq 0$ for all $1 \leq i \leq k$, and as R is a domain, that means that $q\left(r_{k+1}\right)=0$. By the previous part, $q(x)=\left(x-r_{k+1}\right) q^{\prime}(x)$, and so $f(x)=(x-$ $\left.r_{1}\right) \ldots\left(x-r_{k}\right) q(x)=\left(x-r_{1}\right) \ldots\left(x-r_{k}\right)\left(x-r_{k+1}\right) q^{\prime}(x)$, and so $\left(x-r_{1}\right) \ldots\left(x-r_{k+1}\right) \mid f(x)$, as desired.
(c) No. If $R=\mathbb{Z} / 4 \mathbb{Z}$, then look at $f(x)=x^{2}$. Then $(x-2) \nmid x^{2}$, but $2^{2}=4=0$.

3 (a) Let $f(x)$ be a polynomial of degree n. Assume, for contradiction, that f has $n+1$ roots a_{1}, \ldots, a_{n+1}. Then, by problem $2, f$ is divisible by $\left(x-a_{1}\right) \ldots\left(x-a_{n+1}\right)=g(x)$. So $f(x)=q(x) g(x)$. But $\operatorname{deg} f(x)=n$, $\operatorname{deg} g(x)=n+1$, and $\operatorname{deg} q(x) g(x)=\operatorname{deg} q(x)+\operatorname{deg} g(x)$. Thus, $\operatorname{deg} q(x)=-1$, contradicting divisibility. Thus, $f(x)$ cannot have more than n roots.
(b) Let f, g of degree $<n$ and $a_{1}, \ldots, a_{n} \in F$ such that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for all i. Define $h(x)=f(x)-g(x)$. Then $h\left(a_{i}\right)=f\left(a_{i}\right)-g\left(a_{i}\right)=0$ for all i. Thus, h has at least n roots. However, $\operatorname{deg} h(x)=\operatorname{deg}(f(x)-$ $g(x)) \leq \min \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}<n$, and so $h(x)$ has fewer than n roots, a contraiction.
(c) Let $n=1, f(x)=x$ and $g(x)=-x$. Then $f(0)=0, g(0)=0$ agree on one number, but they are distinct.

4 (a) Let $\left(y_{1}, \ldots, y_{m}\right)$ an R-basis of M. Define $f: M \rightarrow R^{m}$ by

$$
f\left(\sum_{i=1}^{m} a_{i} y_{i}\right)=\sum_{i=1}^{m} a_{i} e_{i}
$$

We must show that this is a homomorphism, injective, and surjective. To see that it is a homomorphism, set $a=\sum a_{i} y_{i}, b=\sum b_{i} y_{i}$ and $r \in R$:

$$
\begin{aligned}
f(a+b) & =f\left(\sum a_{i} y_{i}+\sum b_{i} y_{i}\right) \\
& =f\left(\sum\left(a_{i}+b_{i}\right) y_{i}\right) \\
& =\sum\left(a_{i}+b_{i}\right) e_{i} \\
& =\sum a_{i} e_{i}+\sum b_{i} e_{i} \\
& =f\left(\sum a_{i} y_{i}\right)+f\left(\sum b_{i} y_{i}\right) \\
& =f(a)+f(b) \\
f(r a) & =f\left(r \sum a_{i} y_{i}\right) \\
& =f\left(\sum r a_{i} y_{i}\right) \\
& =\sum r a_{i} e_{i} \\
& =r \sum a_{i} e_{i} \\
& =r f\left(\sum a_{i} y_{i}\right) \\
& =r f(a)
\end{aligned}
$$

Now we must show that it is injective and surjective. Assume that $f(a)=0$. Then $\sum a_{i} e_{i}=0$, but e_{i} forms a basis for R^{m}, and so $a_{i}=0$ for all i. Thus, f is injective. To see that it is surjective, let $\sum \alpha_{i} e_{i} \in R^{m}$. This is the image of $\sum \alpha_{i} y_{i} \in M$. Thus, surjective, and so f is an isomorphism.
Now start with $f: M \rightarrow R^{m}$ an isomorphism. Then $f^{-1}: R^{m} \rightarrow M$ is also an isomorphism. Let $y_{i}=f^{-1}\left(e_{i}\right)$. Then y_{1}, \ldots, y_{m} is a basis for M. This is because every element of M can be written as $\sum a_{i} y_{i}$, because this is $\sum a_{i} f^{-1}\left(e_{i}\right)=f^{-1}\left(\sum a_{i} e_{i}\right)$, and f^{-1} is surjective. Similarly, every element can be written uniquely because f^{-1} is injective.
(b) Let $\left(y_{1}, \ldots, y_{m}\right)$ be an R-basis for M. Let f_{1}, \ldots, f_{m} be the dual basis. Then the map $\phi: M \rightarrow M^{*}$ by $\phi\left(\sum a_{i} y_{i}\right)=\sum a_{i} f_{i}$ is an isomorphism. Similarly, if $\phi: M \rightarrow M^{*}$ is an isomorphism, then we can construct a basis as follows: let $y_{1} \in M$ be arbitrary and not zero. Then let f_{1} be $\phi\left(y_{1}\right)$. Find $y_{2} \in \operatorname{ker} f_{1}$, it is linearly
independent from y_{2}, and set $f_{2}=\phi\left(y_{2}\right)$. Continue in this manner, choosing $y_{i} \in \operatorname{ker} f_{1} \cap \ldots \operatorname{ker} f_{i-1}$ until you have a generating set y_{1}, \ldots, y_{m}. As f_{1}, \ldots, f_{m} have $f_{i}\left(y_{j}\right)=\delta_{i j}$, it is the dual, and so the y_{i} form a basis, as desired.
5 (a) Let $f_{1}, f_{2}, f \in M^{*}, x_{1}, x_{2}, x \in M$ and $r \in R$. We first show that ϕ is bilinear.

$$
\begin{aligned}
\phi\left(x, f_{1}+f_{2}\right) & =\left(f_{1}+f_{2}\right)(x) \\
& =f_{1}(x)+f_{2}(x) \\
& =\phi\left(x, f_{1}\right)+\phi\left(x, f_{2}\right) \\
\phi(x, r f) & =(r f)(x) \\
& =r f(x) \\
& =r \phi(x, f) \\
& =r f(x) \\
& =f(r x) \\
& =\phi(r x, f) \\
\phi\left(x_{1}+x_{2}, f\right) & =f\left(x_{1}+x_{2}\right) \\
& =f\left(x_{1}\right)+f\left(x_{2}\right) \\
& =\phi\left(x_{1}, f\right)+\phi\left(x_{2}, f\right)
\end{aligned}
$$

Now we must show that ϕ is nondegenerate. As we are in the situation of the previous problem, let y_{1}, \ldots, y_{m} a basis for M and f_{1}, \ldots, f_{m} the dual basis for M^{*}. Then let $x=\sum a_{i} y_{i} \neq 0$. Then some $a_{i} \neq 0$. Then $\phi\left(x, f_{i}\right)=f_{i}(x)=a_{i} \neq 0$. Similarly, let $f=\sum a_{i} f_{i} \neq 0$, then some $a_{i} \neq 0$, and so $\phi\left(y_{i}, f\right)=f\left(y_{i}\right)=a_{i} \neq 0$. Thus, ϕ is nondegenerate.
(b) Let X be the set of R bases of M and Y the set of R bases of M^{*}. We want to show that ϕ induces a map $\bar{\phi}: X \rightarrow Y$ which is a bijection. Let $\left(y_{1}, \ldots, y_{m}\right) \in X$, that is, be a basis for M. Then set f_{i} be the unique map such that $\phi\left(y_{j}, f_{i}\right)=\delta_{i j}$. Then the set $\left(f_{1}, \ldots, f_{m}\right)$ is a basis of M^{*}, that is, an element of Y. Thus, we have a map $\bar{\phi}: X \rightarrow Y$. To see that it is injective, we set $y=\left(y_{1}, \ldots, y_{m}\right)$ and $x=\left(x_{1}, \ldots, x_{m}\right)$ in X such that $\bar{\phi}(x)=\bar{\phi}(y)$. Then $\left(f_{1}, \ldots, f_{m}\right)=\left(g_{1}, \ldots, g_{m}\right)$ as bases of M^{*}, that is, for the linear functions on M. So $f_{i}=g_{i}$, and so $f_{i}\left(x_{j}\right)=g_{i}\left(x_{j}\right)=\delta_{i j}$ and $f_{i}\left(y_{j}\right)=g_{i}\left(y_{j}\right)=\delta_{i j}$. So x and y have the same dual basis. Taking the dual of this basis, and referring to a previous problem set, we have that $x=y$. To see that it is surjective, we let $\left(f_{1}, \ldots, f_{m}\right) \in M^{*}$, and then take the dual basis in $\left(M^{*}\right)^{*} \cong M$, and note that $\bar{\phi}$ will map this to $\left(f_{1}, \ldots, f_{m}\right)$. Thus, we have a bijection.

7 (a) To see that A^{\prime} is a basis, we note that $\left|A^{\prime}\right|=|A|$, and so it is enough to show that for all $a \in A$, we have $a \in \operatorname{span} A^{\prime}$. For $i \neq 0$, we
have $X^{i}=p_{i}-p_{i-1}$, and for $i=0$ we have $X^{0}=p_{0}$. Thus, A^{\prime} is a basis. The transition matrix must take $\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=1$ to itself, and similarly the other standard basis vectors such that To see that A^{\prime} is a basis, we note that $\left|A^{\prime}\right|=|A|$, and so it is enough to show that for all $a \in A$, we have $a \in \operatorname{span} A^{\prime} . e_{i} \mapsto$

$$
\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
0 \\
\text { vdots } \\
0
\end{array}\right) \text {, with } i \text { ones. The }
$$ matrix which does this is

$$
T=\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \cdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

(b) To see that B^{\prime} is a basis, we note that $\left|B^{\prime}\right|=|B|$, and so it is enough to show that for all $b \in B$, we have $b \in \operatorname{span} B^{\prime}$. For $i \neq n$, we have $e_{i}=f_{i}+f_{n}$ and for $i=n$, we have $e_{n}=f_{n}$, and so B^{\prime} is a basis. For this, we must send the vector e_{i} to $f_{i}=e_{i}-e_{n}$, and so the matrix must be

$$
S=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \cdots & 0 \\
\vdots & 0 & \cdots & \ddots & 0 \\
-1 & -1 & \cdots & -1 & 1
\end{array}\right)
$$

(c) The matrix of f in bases A and B is the identity. Because A and B are the standard bases for their spaces, and we end up taking the i th standard basis vector to the i th standard basis vector. For the matrix of f in terms of A^{\prime} and B^{\prime}, we need to do more work. We can do this by noting that our map is Pol $\stackrel{T}{P}$ ol $\xrightarrow{f} F^{n} \xrightarrow{S^{-1}} F^{n}$ by changing basis, performing f, then changing back. This gives the identity map because it is the map from the basis A to the basis B. Thus, we have $S^{-1} \circ f \circ T=$ id. Thus, $f=S T^{-1}$. Computing this

$$
\text { gives }\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & \ddots & \cdots & 1 \\
\vdots & 0 & \cdots & 1 & 1 \\
1 & 2 & 3 & \cdots & n
\end{array}\right)
$$

