
Homework 8 Solutions

2 (a) Let r ∈ R. First assume that x− r|f(x). Then we can write f(x) =
(x − r)q(x), and so f(r) = (r − r)q(r) = 0q(r) = 0. Now assume
that f(r) = 0. Then we can write f(x) = (x − r)q(x) + p(x), and
deg p(x) < deg(x − r) = 1, and so deg p(x) = 0, so p(x) = p is a
constant. So f(r) = (r− r)q(r) + p = 0q(r) + p = p, but f(r) = 0, so
p = 0. Thus, f(x) = (x− r)q(x), and so x− r|f(x).

(b) Let r1, . . . , rm ∈ R distinct. First assume that (x − r1) . . . (x −
rm)|f(x). Then f(x) = (x − r1) . . . (x − rm)q(x), and so f(ri) = 0
for all i. Now assume that f(ri) = 0 for all i. We proceed by in-
duction. The first step was previous part. Now assume that this
holds true for m = k, and we want to show it for k + 1. As
f(r1) = . . . = f(rk) = 0, we have that f(x) = (x−r1) . . . (x−rk)q(x),
by hypothesis. However, we also have that f(rk+1) = 0, and so
f(rk+1) = (rk+1)− r1) . . . (rk+1 − rk)q(rk+1) = 0. But rk+1 − ri 6= 0
for all 1 ≤ i ≤ k, and as R is a domain, that means that q(rk+1) = 0.
By the previous part, q(x) = (x − rk+1)q′(x), and so f(x) = (x −
r1) . . . (x − rk)q(x) = (x − r1) . . . (x − rk)(x − rk+1)q′(x), and so
(x− r1) . . . (x− rk+1)|f(x), as desired.

(c) No. If R = Z/4Z, then look at f(x) = x2. Then (x − 2) 6 |x2, but
22 = 4 = 0.

3 (a) Let f(x) be a polynomial of degree n. Assume, for contradiction, that
f has n+ 1 roots a1, . . . , an+1. Then, by problem 2, f is divisible by
(x−a1) . . . (x−an+1) = g(x). So f(x) = q(x)g(x). But deg f(x) = n,
deg g(x) = n + 1, and deg q(x)g(x) = deg q(x) + deg g(x). Thus,
deg q(x) = −1, contradicting divisibility. Thus, f(x) cannot have
more than n roots.

(b) Let f, g of degree < n and a1, . . . , an ∈ F such that f(ai) = g(ai) for
all i. Define h(x) = f(x)− g(x). Then h(ai) = f(ai)− g(ai) = 0 for
all i. Thus, h has at least n roots. However, deg h(x) = deg(f(x) −
g(x)) ≤ min{deg f(x),deg g(x)} < n, and so h(x) has fewer than n
roots, a contraiction.

(c) Let n = 1, f(x) = x and g(x) = −x. Then f(0) = 0, g(0) = 0 agree
on one number, but they are distinct.
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4 (a) Let (y1, . . . , ym) an R-basis of M . Define f : M → Rm by

f(
m∑

i=1

aiyi) =
m∑

i=1

aiei.

We must show that this is a homomorphism, injective, and surjective.
To see that it is a homomorphism, set a =

∑
aiyi, b =

∑
biyi and

r ∈ R:

f(a+ b) = f(
∑

aiyi +
∑

biyi)

= f(
∑

(ai + bi)yi)

=
∑

(ai + bi)ei

=
∑

aiei +
∑

biei

= f(
∑

aiyi) + f(
∑

biyi)

= f(a) + f(b)

f(ra) = f(r
∑

aiyi)

= f(
∑

raiyi)

=
∑

raiei

= r
∑

aiei

= rf(
∑

aiyi)

= rf(a)

Now we must show that it is injective and surjective. Assume that
f(a) = 0. Then

∑
aiei = 0, but ei forms a basis for Rm, and so

ai = 0 for all i. Thus, f is injective. To see that it is surjective, let∑
αiei ∈ Rm. This is the image of

∑
αiyi ∈ M . Thus, surjective,

and so f is an isomorphism.
Now start with f : M → Rm an isomorphism. Then f−1 : Rm →M
is also an isomorphism. Let yi = f−1(ei). Then y1, . . . , ym is a
basis for M . This is because every element of M can be written
as

∑
aiyi, because this is

∑
aif
−1(ei) = f−1(

∑
aiei), and f−1 is

surjective. Similarly, every element can be written uniquely because
f−1 is injective.

(b) Let (y1, . . . , ym) be an R-basis for M . Let f1, . . . , fm be the dual
basis. Then the map φ : M → M∗ by φ(

∑
aiyi) =

∑
aifi is an

isomorphism. Similarly, if φ : M → M∗ is an isomorphism, then
we can construct a basis as follows: let y1 ∈ M be arbitrary and
not zero. Then let f1 be φ(y1). Find y2 ∈ ker f1, it is linearly
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independent from y2, and set f2 = φ(y2). Continue in this manner,
choosing yi ∈ ker f1 ∩ . . . ker fi−1 until you have a generating set
y1, . . . , ym. As f1, . . . , fm have fi(yj) = δij , it is the dual, and so the
yi form a basis, as desired.

5 (a) Let f1, f2, f ∈M∗, x1, x2, x ∈M and r ∈ R. We first show that φ is
bilinear.

φ(x, f1 + f2) = (f1 + f2)(x)
= f1(x) + f2(x)
= φ(x, f1) + φ(x, f2)

φ(x, rf) = (rf)(x)
= rf(x)
= rφ(x, f)
= rf(x)
= f(rx)
= φ(rx, f)

φ(x1 + x2, f) = f(x1 + x2)
= f(x1) + f(x2)
= φ(x1, f) + φ(x2, f)

Now we must show that φ is nondegenerate. As we are in the situation
of the previous problem, let y1, . . . , ym a basis for M and f1, . . . , fm

the dual basis for M∗. Then let x =
∑
aiyi 6= 0. Then some ai 6= 0.

Then φ(x, fi) = fi(x) = ai 6= 0. Similarly, let f =
∑
aifi 6= 0,

then some ai 6= 0, and so φ(yi, f) = f(yi) = ai 6= 0. Thus, φ is
nondegenerate.

(b) Let X be the set of R bases of M and Y the set of R bases of
M∗. We want to show that φ induces a map φ̄ : X → Y which
is a bijection. Let (y1, . . . , ym) ∈ X, that is, be a basis for M .
Then set fi be the unique map such that φ(yj , fi) = δij . Then the
set (f1, . . . , fm) is a basis of M∗, that is, an element of Y . Thus,
we have a map φ̄ : X → Y . To see that it is injective, we set
y = (y1, . . . , ym) and x = (x1, . . . , xm) in X such that φ̄(x) = φ̄(y).
Then (f1, . . . , fm) = (g1, . . . , gm) as bases of M∗, that is, for the
linear functions on M . So fi = gi, and so fi(xj) = gi(xj) = δij and
fi(yj) = gi(yj) = δij . So x and y have the same dual basis. Taking
the dual of this basis, and referring to a previous problem set, we have
that x = y. To see that it is surjective, we let (f1, . . . , fm) ∈ M∗,
and then take the dual basis in (M∗)∗ ∼= M , and note that φ̄ will
map this to (f1, . . . , fm). Thus, we have a bijection.

7 (a) To see that A′ is a basis, we note that |A′| = |A|, and so it is enough
to show that for all a ∈ A, we have a ∈ spanA′. For i 6= 0, we
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have Xi = pi − pi−1, and for i = 0 we have X0 = p0. Thus, A′ is

a basis. The transition matrix must take


1
0
...
0

 = 1 to itself, and

similarly the other standard basis vectors such that To see that A′ is
a basis, we note that |A′| = |A|, and so it is enough to show that for

all a ∈ A, we have a ∈ spanA′.ei 7→



1
...
1
0

vdots
0


, with i ones. The

matrix which does this is

T =


1 1 · · · · · · 1
0 1 · · · · · · 1
0 0 1 · · · 1
... · · ·

. . .
...

...
0 0 · · · 0 1

 .

(b) To see that B′ is a basis, we note that |B′| = |B|, and so it is enough
to show that for all b ∈ B, we have b ∈ spanB′. For i 6= n, we have
ei = fi +fn and for i = n, we have en = fn, and so B′ is a basis. For
this, we must send the vector ei to fi = ei − en, and so the matrix
must be

S =



1 0 0 · · · 0
0 1 0 · · · 0

0 0
. . . · · · 0

... 0 · · ·
. . . 0

−1 −1 · · · −1 1


(c) The matrix of f in bases A and B is the identity. Because A and

B are the standard bases for their spaces, and we end up taking the
ith standard basis vector to the ith standard basis vector. For the
matrix of f in terms of A′ and B′, we need to do more work. We

can do this by noting that our map is Pol
T

P ol
f→ Fn S−1

→ Fn by
changing basis, performing f , then changing back. This gives the
identity map because it is the map from the basis A to the basis B.
Thus, we have S−1 ◦ f ◦ T = id. Thus, f = ST−1. Computing this
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gives 

1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

... 0 · · · 1 1
1 2 3 · · · n
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