Homework 8 Solutions

- 2 (a) Let $r \in R$. First assume that x r|f(x). Then we can write f(x) = (x r)q(x), and so f(r) = (r r)q(r) = 0q(r) = 0. Now assume that f(r) = 0. Then we can write f(x) = (x r)q(x) + p(x), and $\deg p(x) < \deg(x r) = 1$, and so $\deg p(x) = 0$, so p(x) = p is a constant. So f(r) = (r r)q(r) + p = 0q(r) + p = p, but f(r) = 0, so p = 0. Thus, f(x) = (x r)q(x), and so x r|f(x).
 - (b) Let $r_1, \ldots, r_m \in R$ distinct. First assume that $(x r_1) \ldots (x r_m)|f(x)$. Then $f(x) = (x r_1) \ldots (x r_m)q(x)$, and so $f(r_i) = 0$ for all *i*. Now assume that $f(r_i) = 0$ for all *i*. We proceed by induction. The first step was previous part. Now assume that this holds true for m = k, and we want to show it for k + 1. As $f(r_1) = \ldots = f(r_k) = 0$, we have that $f(x) = (x r_1) \ldots (x r_k)q(x)$, by hypothesis. However, we also have that $f(r_{k+1}) = 0$, and so $f(r_{k+1}) = (r_{k+1}) r_1) \ldots (r_{k+1} r_k)q(r_{k+1}) = 0$. But $r_{k+1} r_i \neq 0$ for all $1 \le i \le k$, and as R is a domain, that means that $q(r_{k+1}) = 0$. By the previous part, $q(x) = (x r_{k+1})q'(x)$, and so $f(x) = (x r_1) \ldots (x r_k)q(x) = (x r_1) \ldots (x r_k)q(x)$, and so $(x r_1) \ldots (x r_{k+1})|f(x)$, as desired.
 - (c) No. If $R = \mathbb{Z}/4\mathbb{Z}$, then look at $f(x) = x^2$. Then $(x-2)/x^2$, but $2^2 = 4 = 0$.
- 3 (a) Let f(x) be a polynomial of degree n. Assume, for contradiction, that f has n + 1 roots a_1, \ldots, a_{n+1} . Then, by problem 2, f is divisible by $(x-a_1)\ldots(x-a_{n+1}) = g(x)$. So f(x) = q(x)g(x). But deg f(x) = n, deg g(x) = n + 1, and deg q(x)g(x) = deg q(x) + deg g(x). Thus, deg q(x) = -1, contradicting divisibility. Thus, f(x) cannot have more than n roots.
 - (b) Let f, g of degree < n and $a_1, \ldots, a_n \in F$ such that $f(a_i) = g(a_i)$ for all i. Define h(x) = f(x) - g(x). Then $h(a_i) = f(a_i) - g(a_i) = 0$ for all i. Thus, h has at least n roots. However, deg $h(x) = deg(f(x) - g(x)) \le min\{deg f(x), deg g(x)\} < n$, and so h(x) has fewer than nroots, a contraiction.
 - (c) Let n = 1, f(x) = x and g(x) = -x. Then f(0) = 0, g(0) = 0 agree on one number, but they are distinct.

4 (a) Let (y_1, \ldots, y_m) an *R*-basis of *M*. Define $f: M \to R^m$ by

$$f(\sum_{i=1}^m a_i y_i) = \sum_{i=1}^m a_i e_i.$$

We must show that this is a homomorphism, injective, and surjective. To see that it is a homomorphism, set $a = \sum a_i y_i$, $b = \sum b_i y_i$ and $r \in R$:

$$f(a+b) = f(\sum a_i y_i + \sum b_i y_i)$$

$$= f(\sum (a_i + b_i)y_i)$$

$$= \sum (a_i + b_i)e_i$$

$$= \sum a_i e_i + \sum b_i e_i$$

$$= f(\sum a_i y_i) + f(\sum b_i y_i)$$

$$= f(a) + f(b)$$

$$f(ra) = f(r \sum a_i y_i)$$

$$= f(\sum ra_i y_i)$$

$$= r \sum a_i e_i$$

$$= rf(\sum a_i y_i)$$

$$= rf(a)$$

Now we must show that it is injective and surjective. Assume that f(a) = 0. Then $\sum a_i e_i = 0$, but e_i forms a basis for \mathbb{R}^m , and so $a_i = 0$ for all *i*. Thus, *f* is injective. To see that it is surjective, let $\sum \alpha_i e_i \in \mathbb{R}^m$. This is the image of $\sum \alpha_i y_i \in M$. Thus, surjective, and so *f* is an isomorphism.

Now start with $f: M \to R^m$ an isomorphism. Then $f^{-1}: R^m \to M$ is also an isomorphism. Let $y_i = f^{-1}(e_i)$. Then y_1, \ldots, y_m is a basis for M. This is because every element of M can be written as $\sum a_i y_i$, because this is $\sum a_i f^{-1}(e_i) = f^{-1}(\sum a_i e_i)$, and f^{-1} is surjective. Similarly, every element can be written uniquely because f^{-1} is injective.

(b) Let (y_1, \ldots, y_m) be an *R*-basis for *M*. Let f_1, \ldots, f_m be the dual basis. Then the map $\phi : M \to M^*$ by $\phi(\sum a_i y_i) = \sum a_i f_i$ is an isomorphism. Similarly, if $\phi : M \to M^*$ is an isomorphism, then we can construct a basis as follows: let $y_1 \in M$ be arbitrary and not zero. Then let f_1 be $\phi(y_1)$. Find $y_2 \in \ker f_1$, it is linearly independent from y_2 , and set $f_2 = \phi(y_2)$. Continue in this manner, choosing $y_i \in \ker f_1 \cap \ldots \ker f_{i-1}$ until you have a generating set y_1, \ldots, y_m . As f_1, \ldots, f_m have $f_i(y_j) = \delta_{ij}$, it is the dual, and so the y_i form a basis, as desired.

5 (a) Let $f_1, f_2, f \in M^*$, $x_1, x_2, x \in M$ and $r \in R$. We first show that ϕ is bilinear.

$$\phi(x, f_1 + f_2) = (f_1 + f_2)(x)$$

$$= f_1(x) + f_2(x)$$

$$= \phi(x, f_1) + \phi(x, f_2)$$

$$\phi(x, rf) = (rf)(x)$$

$$= rf(x)$$

$$= r\phi(x, f)$$

$$= f(rx)$$

$$= \phi(rx, f)$$

$$\phi(x_1 + x_2, f) = f(x_1 + x_2)$$

$$= f(x_1) + f(x_2)$$

$$= \phi(x_1, f) + \phi(x_2, f)$$

Now we must show that ϕ is nondegenerate. As we are in the situation of the previous problem, let y_1, \ldots, y_m a basis for M and f_1, \ldots, f_m the dual basis for M^* . Then let $x = \sum a_i y_i \neq 0$. Then some $a_i \neq 0$. Then $\phi(x, f_i) = f_i(x) = a_i \neq 0$. Similarly, let $f = \sum a_i f_i \neq 0$, then some $a_i \neq 0$, and so $\phi(y_i, f) = f(y_i) = a_i \neq 0$. Thus, ϕ is nondegenerate.

- (b) Let X be the set of R bases of M and Y the set of R bases of M^* . We want to show that ϕ induces a map $\overline{\phi} : X \to Y$ which is a bijection. Let $(y_1, \ldots, y_m) \in X$, that is, be a basis for M. Then set f_i be the unique map such that $\phi(y_j, f_i) = \delta_{ij}$. Then the set (f_1, \ldots, f_m) is a basis of M^* , that is, an element of Y. Thus, we have a map $\overline{\phi} : X \to Y$. To see that it is injective, we set $y = (y_1, \ldots, y_m)$ and $x = (x_1, \ldots, x_m)$ in X such that $\overline{\phi}(x) = \overline{\phi}(y)$. Then $(f_1, \ldots, f_m) = (g_1, \ldots, g_m)$ as bases of M^* , that is, for the linear functions on M. So $f_i = g_i$, and so $f_i(x_j) = g_i(x_j) = \delta_{ij}$ and $f_i(y_j) = g_i(y_j) = \delta_{ij}$. So x and y have the same dual basis. Taking the dual of this basis, and referring to a previous problem set, we have that x = y. To see that it is surjective, we let $(f_1, \ldots, f_m) \in M^*$, and then take the dual basis in $(M^*)^* \cong M$, and note that $\overline{\phi}$ will map this to (f_1, \ldots, f_m) . Thus, we have a bijection.
- 7 (a) To see that A' is a basis, we note that |A'| = |A|, and so it is enough to show that for all $a \in A$, we have $a \in \text{span}A'$. For $i \neq 0$, we

have $X^i = p_i - p_{i-1}$, and for i = 0 we have $X^0 = p_0$. Thus, A' is a basis. The transition matrix must take $\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} = 1$ to itself, and

similarly the other standard basis vectors such that To see that A' is a basis, we note that |A'| = |A|, and so it is enough to show that for

all $a \in A$, we have $a \in \operatorname{span} A'.e_i \mapsto \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \\ vdots \\ 0 \end{pmatrix}$, with *i* ones. The

matrix which does this is

$$T = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \cdots & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

(b) To see that B' is a basis, we note that |B'| = |B|, and so it is enough to show that for all $b \in B$, we have $b \in \operatorname{span} B'$. For $i \neq n$, we have $e_i = f_i + f_n$ and for i = n, we have $e_n = f_n$, and so B' is a basis. For this, we must send the vector e_i to $f_i = e_i - e_n$, and so the matrix must be

$$S = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \cdots & 0 \\ \vdots & 0 & \cdots & \ddots & 0 \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix}$$

(c) The matrix of f in bases A and B is the identity. Because A and B are the standard bases for their spaces, and we end up taking the *i*th standard basis vector to the *i*th standard basis vector. For the matrix of f in terms of A' and B', we need to do more work. We can do this by noting that our map is $Pol \stackrel{T}{P} ol \stackrel{f}{\to} F^n \stackrel{S^{-1}}{\to} F^n$ by changing basis, performing f, then changing back. This gives the identity map because it is the map from the basis A to the basis B. Thus, we have $S^{-1} \circ f \circ T = id$. Thus, $f = ST^{-1}$. Computing this

gives

$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	1 1	1	 	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
0	0	·		1
	$\begin{array}{c} 0 \\ 2 \end{array}$	 3	1 	$\begin{pmatrix} 1\\ n \end{pmatrix}$