Homework 9 Solutions

2 From discussion in recitation, $\mathscr{L}\left(\left(R^{2}\right)^{2}, R\right)$ is the dual of $R^{2} \otimes_{R} R^{2}$. So it suffices to show that $R^{2} \otimes_{R} R^{2}$ has dimension 4. By definition, it has a basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$, and so $\mathscr{L}\left(\left(R^{2}\right)^{2}, R\right)$ has dimension four. The other two cases are trickier. Let $\phi \in \mathscr{L}^{s}\left(\left(R^{2}\right)^{2}, R\right)$. Then $\phi(m, n)=$ $\phi(n, m)$. So, $\tilde{\phi}\left(\sum a_{i j} e_{i} \otimes e_{j}\right)$ must have $a_{i j}=a_{j i}$, and any map with this condition is symmetric. Thus, $\phi\left(a e_{1}+b e_{2}, c e_{1}+d e_{2}\right)=a c \phi\left(e_{1}, e_{1}\right)+(a d+$ $b c) \phi\left(e_{1}, e_{2}\right)+b d \phi\left(e_{2}, e_{2}\right)$. Thus, the space of symmetric maps is dual to the submodule of $R^{2} \otimes_{R} R^{2}$ generated by $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{2}$, and thus has dimension three. So now, we must determine what submodule of $R^{2} \otimes_{R} R^{2}$ the space $\mathscr{L}^{\text {alt }}\left(\left(R^{2}\right)^{2}, R\right)$ is dual to. For an alternating map ϕ, we have $\phi\left(a e_{1}+b e_{1}, c e_{1}+d e_{2}\right)=a c \phi\left(e_{1}, e_{1}\right)+a d \phi\left(e_{1}, e_{2}\right)+b c\left(\phi\left(e_{2}, e_{1}\right)+d b \phi\left(e_{2}, e_{2}\right)\right.$, but also that $\phi\left(e_{1}, e_{1}\right)=\phi\left(e_{2}, e_{2}\right)=0$ and $\phi\left(e_{1}, e_{2}\right)=-\phi\left(e_{2}, e_{1}\right)$. Thus, $\phi\left(a e_{1}+b e_{2}, c e_{1}+d e_{2}\right)=(a d-b c) \phi\left(e_{1}, e_{2}\right)$, and so $\mathscr{L}^{\text {alt }}\left(\left(R^{2}\right)^{2}, R\right)$ is dual to the span on $e_{1} \otimes e_{2}$, and so is one dimensional, as desired.

3 We must show that this set is linearly independent and spanning. First, spanning. Let $f: T \rightarrow R$ any function. Set $a_{i}=f\left(x_{i}\right)$, for some ordering of $T=\left\{x_{1}, \ldots, x_{n}\right\}$. Then look at $\sum a_{i} f_{x_{i}}$. We claim that this is f. Applying it to x_{j}, we obtain $\sum a_{i} f_{x_{i}}\left(x_{j}\right)=\sum a_{i} \delta_{i j}=a_{j}=f\left(x_{j}\right)$, and so $f=\sum a_{i} f_{x_{i}}$. Now, linear independence. Let $f=\sum a_{i} f_{x_{i}}=0$. Then, $f\left(x_{j}\right)=0$, and so $\sum a_{i} f_{x_{i}}\left(x_{j}\right)=\sum a_{i} \delta_{i j}=a_{j}=0$, but this must hold for all j, and so all the coefficients must be 0 . Thus, we have a spanning set.

3 Let A be an integer matrix whose inverse, A^{-1}, is also an integer matrix. Then $A A^{-1}=I$. Taking determinants, we have $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} I=1$. But $\operatorname{det} A A^{-1}=\operatorname{det} A \operatorname{det} A^{-1}$, and so $\operatorname{det} A \operatorname{det} A^{-1}=1$. Thus, $\operatorname{det} A$ is a unit in \mathbb{Z}, and so must be ± 1.

6 [a]
Let A, B, C as in the problem. Then we note that for any matrix, there's a larger field such that it is equivalent to an upper triangular matrix, and that determinant isn't changed by changing between equivalent matrices. Let A^{\prime}, B^{\prime} be upper triangular matrices equivalent to A, B. Then, the whole matrix $\left(\begin{array}{cc}A^{\prime} & C \\ 0 & B^{\prime}\end{array}\right)$ is upper triangular, and has determinant $\operatorname{det} A^{\prime} \operatorname{det} B^{\prime}=\operatorname{det} A \operatorname{det} B$. To see that this
is the determinant of $\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$, we note that we can get from this matrix to the one we want by using a change of basis block matrix.
(a) For this, the same trick suffices, and you can turn each A_{i} into an upper triangular matrix without affecting any determinants.
17 By Cramer's Rule, $x_{i}=\Delta_{i} / \Delta$, so we will merely compute Δ_{i} and Δ and declare solutions.
a

$$
\begin{aligned}
& \Delta=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -1
\end{array}\right)=2 \\
& \Delta_{1}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 3 & 4 \\
0 & -1 & -1
\end{array}\right)=1 \\
& \Delta_{2}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 4 \\
1 & 0 & -1
\end{array}\right)=4, \\
& \Delta_{3}=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
-1 & -1 & 0
\end{array}\right)=-3
\end{aligned}
$$

and so $x=1 / 2, y=2, z=-3 / 2$.
b Similarly, here,

$$
\begin{aligned}
& \Delta=\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 1 & 4 & 5 \\
1 & 1 & 5 & 6
\end{array}\right)=-1 \\
& \Delta_{1}=\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4 \\
1 & 1 & 4 & 5 \\
0 & 1 & 5 & 6
\end{array}\right)=-4 \\
& \Delta_{2}=\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 4 \\
1 & 1 & 4 & 5 \\
1 & 0 & 5 & 6
\end{array}\right)=2 \\
& \Delta_{3}=\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 4 \\
1 & 1 & 1 & 5 \\
1 & 1 & 0 & 6
\end{array}\right)=4
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \Delta_{4}=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 0 \\
1 & 1 & 4 & 1 \\
1 & 1 & 5 & 0
\end{array}\right)=-3 \text {, } \\
& \text { so } x=4, y=-2, z=-4, w=-3
\end{aligned}
$$

