1 Groebner Bases

Diane Maclagan
Hill 240 maclagan@math
Office Hour M1-2
Text: Eisenbud, recommended: Atiyah-Macdonald
Outline:
Groebner Bases
Localization
Associated Primes
Integral Dependence
 Blow-ups/filtrations
Flatness
Completion
Dimension
CM rings
Groebner Basics

Definition 1.1 (Affine Variety). Let $S = k[x_1, \ldots, x_n]$ and let I be an ideal of S. Fact: S is Noetherian so $I = \langle f_1, \ldots, f_k \rangle$.

The affine variety $V(I) = \{ \vec{v} = (v_1, \ldots, v_n) \in k^n : f_i(\vec{v}) = 0 \forall i \leq k \}$.

For example, $S = k[x, y]$ and $I = \langle x - y \rangle$ gives the line $y = x$ and $V(y^2 - x^3 + x)$ is an elliptic curve.

Definition 1.2 (Projective Space). Projective space, \mathbb{P}^n_k is the set of lines through the origin in k^{n+1}. We write a point in \mathbb{P}^n as $\vec{v} = (v_0 : \ldots : v_n)$ and $\vec{v} \sim \vec{v}'$ if $\vec{v} = \lambda \vec{v}'$ for some $\lambda \in k^*$.

Definition 1.3 (Projective Variety). If we set $S = k[x_0, \ldots, x_n]$, and grade S by $\deg(x_i) = 1$ for $0 \leq i \leq n$, then a polynomial is homogeneous if every monomial has the same degree. In fact, if $f \in S$ is homogeneous of degree d, we can ask if $f(\vec{v}) = 0$ for $\vec{v} \in \mathbb{P}^n$, because $f(\lambda \vec{v}) = \lambda^d f(\vec{v})$.

A Projective Variety is $V(I) = \{ \vec{v} \in \mathbb{P}^n : f(\vec{v}) = 0 \forall f \in I \text{ homogeneous} \}$

So, we ask the question, given $I \subset k[x_1, \ldots, x_n] = S$, $f \in S$ is $f \in I$? ie, if $I = \langle f_1, \ldots, f_r \rangle$, are there $h_1, \ldots, h_r \in S$ with $f \in \sum_{i=1}^r h_i f_i$.

e.g., is $x + 7 \in \langle x^2 - 4x + 3, x^2 + x - 2 \rangle \subset k[x]$? Well, $k[x]$ is a PID, so $I = \langle f \rangle$ for some $f \in k[x]$, and $x + 7 \in I$ iff $f(x + 7)$. So we use the Euclidean Algorithm.

The Euclidean Algorithm gives $x - 1$ as the gcd, so $I = (x - 1)$, so $x + 7 \notin I$ as $x - 1 \not|x + 7$.

How about in several variables? Is $x + 3y - 2z \in \langle x + y - z, y - z \rangle$, ie, is $(1, 3, -2) \in \langle (1, 1, -1), (0, 1, -1) \rangle$? We can use Gaussian Elimination to say no.

Now, is $xy^2 - x$ in $\langle xy + 1, y^2 - 1 \rangle$? Naive attempts at division don’t work, but $xy^2 - x = x(y^2 - 1)$, so it IS in the ideal.
Definition 1.4 (Gröbner Basis (Vague)). A Gröbner Basis for an ideal I is a generating set for which long division decides the ideal membership problem.

Definition 1.5 (Term Order). A term order is a total order on the monomials in \(S = k[x_1, \ldots, x_n] \) such that

1. \(1 < x^u := x_1^{u_1} \cdots x_n^{u_n} \) for all \(u \in \mathbb{N}^n \setminus \{0\} \)
2. \(x^u < x^v \Rightarrow x^{u+w} < x^{v+w} \).

Examples include lexicographic ordering, that is, \(x^u < x^v \) if the first entry of \(v - u \) is positive, for example \(y^2 < xz^2 < x^2 \).

Graded lex, \(x^u < x^v \) if \(\deg(x^u) < \deg(x^v) \) or \(\deg(x^u) = \deg(x^v) \) and \(x^u <_{\text{lex}} x^v \).

Reverse Lex (degree revlex), \(x^u < x^v \) if \(\deg(x^u) < \deg(x^v) \) or the last nonzero element of \(v - u \) is negative. eg, \(xz < y^2 < z^2 \).

Definition 1.6 (Lead Term, Initial Ideal). The leading term of a polynomial \(f \in I \) is the largest monomial appearing in it with respect to a term order, e.g. \(f = 3xy^2 - 7xy + 8z^2 \) with lex gives \(\text{in}_<(f) = x^2 \).

The initial ideal \(\text{in}_<(I) = \{ \text{in}_<(f) : f \in I \} \). WARNING: if \(I = \langle f_1, \ldots, f_r \rangle \), then \(\text{in}_<(I) \supseteq \langle \text{in}(f_1), \ldots, \text{in}(f_r) \rangle \) but they are not, in general, equal.

eg, \(I = \langle xy + 1, y^2 - 1 \rangle \), \(x + y \in I \), \(y(xy + 1) = x(y^2 - 1) \), so if \(< \) is lex, \(\text{in}(x + y) = x \in \text{in}(I) = \langle xy, y^2 \rangle \).

Definition 1.7 (Gröbner Basis). A Gröbner Basis for an ideal \(I \subseteq S \) is a generating set \(G = \{ g_1, \ldots, g_r \} \) for \(I \) for which \(\text{in}(I) = \langle \text{in}(g_1), \ldots, \text{in}(g_r) \rangle \).

Point: We can define a division algorithm. Order the Gröbner basis and divide the polynomial by multiplying elements of the Gröbner basis to cancel the leading term of \(f \) if possible, otherwise pass to the next monomial, etc.

If \(G \) is a Gröbner basis, then division by \(G \) will have remainder 0 if and only if the polynomial is in the ideal.

Facts: Every ideal in \(k[x_1, \ldots, x_n] \) has a (finite) Gröbner basis, and there exists an algorithm called the Buchberger Algorithm to compute it.

Definition 1.8 (Division Algorithm). Input: \(f \), \(\{ g_1, \ldots, g_k \} \)

Output: Remainder on dividing \(f \) by \(\{ g_1, \ldots, g_k \} \).

Set \(f' = f \), \(r = 0 \). While \(\text{in}(f') \in \langle \text{in}(g_1), \ldots, \text{in}(g_k) \rangle \), let \(j \) be the smallest index for which \(\text{in}(f') = x^v \text{in}(g_j) \). Set \(f' = f' - \text{lc}(f')/\text{lc}(g_j) x^v g_j \)

If \(f' = 0 \), return \(r \) otherwise \(r = r + \text{lc}(f') \text{in}(f') \) and \(f' = f' - \text{lc}(f') \text{in}(f') \), and return to the while loop.

Note: this algorithm terminates because a term order has no infinite descending chains. Also, this algorithm writes \(f = \sum h_i g_i + r \) for some polynomials \(h_i \in S \) with \(\text{in}(h_i g_i) \leq \text{in}(f) \).

Proposition 1.1. If \(G = \{ g_1, \ldots, g_k \} \) is a Gröbner basis for \(I \) then the remainder on dividing \(f \) by \(G \) is 0 iff \(f \in I \).
Proof. If \(r = 0 \) then \(f \in I \) since \(f = \sum h_i g_i \).

Conversely, if \(f \in I \), then in the while loop, \(f' \in I \) and we only leave it when \(f' = 0 \), so \(r = 0 \).

Definition 1.9 (S-Pair). If \(f, g \in S \) their S-pair is \(S(f, g) = \frac{lcm(in(f), in(g))}{\text{lcm}(g, in(g))} f - \frac{lcm(in(f), in(g))}{\text{lcm}(g, in(g))} g \).

E.g., if \(f = 3x^2 - 7y^2 \) and \(g = 8xy + z^2 \), so \(S(f, g) = \frac{\frac{8}{8x^3}(3x^2 - 7y^2) - \frac{8}{8y}(8xy + z^2)}{8x} = \frac{7}{8}y^3 - \frac{1}{2}xz^2 \).

The \(S \) is for syzygy.

Algorithm 1 (Buchberger). Input: \(\{f_1, \ldots, f_s\} \) generating \(I \), and a term order \(< \).

Output: A Gröbner basis for \(I \) wrt. \(< \).

1. Current\(= \{f_i, f_j \} : 1 \leq i < j \leq s \}, \mathcal{G} = \{f_1, \ldots, f_s\}

2. While Current\(\neq \emptyset \), do Pick \(f, g \in \text{Current}, \text{Current} = \text{Current} \setminus \{f, g\}, r = \text{remainder on dividing } S(f, g) \text{ by } \mathcal{G} \). If \(r \neq 0 \), then \(\mathcal{G} = \mathcal{G} \cup \{r\} \) and \(\text{Current} = \text{Current} \setminus \{r : f \in \mathcal{G}\} \).

3. Output \(\mathcal{G} \)

Corollary 1.2. If \(\{g_1, \ldots, g_s\} \subset I \) and \(\langle \text{in}(g_1), \ldots, \text{in}(g_s) \rangle = \text{in}(I) \) then \(\{g_1, \ldots, g_s\} \) generate \(I \).

Definition 1.10 (Minimal Gröbner Basis). A GB is minimal if each \(\text{in}(g_i) \) is a minimal generator of \(\text{in}(I) \) and each minimal generator appears once in \(\{\text{in}(g_i)\} \).

Definition 1.11 (Reduced Gröbner Basis). A Gröbner basis is reduced if for all \(g \in \mathcal{G} \) remainder on dividing \(g \) by \(\mathcal{G} \setminus \{g\} \) is \(g \).

Example: There is a unique reduced GB for each term order.

Proof. We must check that Buchberger’s Algorithm terminates and gives the correct answer.

At stage \(i \) of the algorithm, set \(I_i = \langle \text{in}(g) : g \in \mathcal{G} \rangle \). Note that \(I_{i+1} \supseteq I_i \).

If the algorithm did not terminate, we would get an infinite ascending chain \(I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots \) which would contradict the fact that \(S \) is Noetherian.

If the output is not a Gröbner basis, then there is \(f \in I, f = \sum h_i g_i \) with \(g_i \in \mathcal{G}, h_i \in S \) with \(\text{in}(f) \notin \langle \text{in}(g) : g \in \mathcal{G} \rangle \). Write \(m = \max \text{in}(h_i g_i) \), we will assume that \(m \) is minimal for such a counterexample. Let \(\mathcal{I}_m = \{i : \text{in}(h_i g_i) = m\} \), since \(m \in \langle \text{in}(g) : g \in \mathcal{G} \rangle \), we must have \(\text{in}(f) < m \). Thus, \(|\mathcal{I}_m| \geq 2 \).

Second assumption, \(\mathcal{I}_m \) is minimal for such expressions.

Pick \(i, j \in \mathcal{I}_m \). Write \(S(g_i, g_j) = \sum p_j g_k, p_k \in S \). Since \(\text{in}(g_i), \text{in}(g_j) \mid m \), \(\text{lcm}(\text{in}(g_i), \text{in}(g_j)) \mid m \), so there exit \(c \in k, m' \) monomial such that \(\text{in}(cm' g_i) = \text{in}(h_i g_i) = \text{in}(cm' g_j) \), so \(cm' g_i = cm' (\ell_j g_j + \sum p_k g_k) \), where \(\text{in}(cm' p_k g_k) = m' \text{in}(p_k g_k) < m \).
Replace $h_i g_i + h_j g_j$ by $(h_i - cm' \ell_i) g_i$ which has initial term $< m$ as does $(h_j + cm' \ell_j) g_j$, so $\sum cm' p_k g_k$ has initial term $< m$.

This gives either a set with smaller $|\mathcal{F}_m|$ or smaller m, contradicting our minimality assumption. \hfill \square

Applications of the Division Algorithm

1. Given $I \subseteq k[x_1, \ldots, x_n]$, compute $I \cap k[x_2, \ldots, x_n] = I'$. $V(I') \subseteq k^{n-1}$ is the closure of the projection of $V(I)$ to k^{n-1}. The algorithm is to compute a lex GB for I with x_1 largest and take the polynomials without x_1 in them.

2. As $V(I \cap J) = V(I) \cup V(J)$, we may want to compute $I \cap J$. Compute $K = tI + (1-t)J \subseteq S[t]$, then compute $K \cap S$.

3. $I : J = \{ fg \in I \text{ for all } g \in J \}$. This is, geometrically, the closure of $V(I) \setminus V(J)$. $I : J = \cap (I : f_i)$ where $J = \{ f_1, \ldots, f_s \}$, and $I : f$ is computed by computing $I \cap (f)$ and then dividing the generating set by f.

2 Hom, Tensor and Localization

Definition 2.1 ($\hom_R(M, N)$). $\hom_R(M, N)$ is the set of R-module homomorphisms from M to N, ie, $\varphi : M \to N$ is a group homomorphism with $\varphi(rm) = r\varphi(m)$. It is, in fact, a group with $(\phi + \psi)(m) = \phi(m) + \psi(m)$, and has an R-module structure by $(r\phi)(m) = r(\phi(m))$.

This means $\hom_R(M, -)$ is a covariant functor from R-mod to R-mod. The map on objects takes N to $\hom_R(M, N)$. If $\alpha : N \to N'$ is an R-module homomorphism, then $\hom_R(M, \alpha) : \hom_R(M, N) \to \hom_R(M, N')$ by $\phi \mapsto \alpha \circ \phi$. Similarly, $\hom_R(-, N)$ is a contravariant functor from R-mod to R-mod.

Proposition 2.1. \hom is left exact. That is, if $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ then $0 \to \hom_R(M, A) \xrightarrow{\hom_R(M, \alpha)} \hom_R(M, B) \xrightarrow{\hom_R(M, \beta)} \hom_R(M, C)$.

WARNING: If $0 \to A \to B \to C \to 0$, we don’t expect $0 \to \hom_R(M, A) \to \hom_R(M, B) \to \hom_R(M, C) \to 0$ to be exact.

Example: $0 \to \mathbb{Z} \xrightarrow{2 \cdot} \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/2 \to 0$, apply $\hom(\mathbb{Z}/2, -)$. This is where Ext comes from.

In general, $0 \to A \to B \to C \to 0$ and if F is a functor, you don’t expect $0 \to F(A) \to F(B) \to F(C) \to 0$ to be exact. If f is left (right) exact we get derived functors from taking cohomology.

Tensor Product

Definition 2.2 (Tensor). If M, N are R-modules then $M \otimes_R N$ is the abelian group that is the quotient of the free abelian group on the symbols $\{ m \otimes n : m \in M, n \in N \}$ modulo the relations $(am + bm') \otimes (cn + dn') = acm \otimes n + adm \otimes n' + bcm' \otimes n + bdm' \otimes n'$. It is an R-module by $r(m \otimes n) = rm \otimes n = m \otimes rn$.

4
Hilbert’s Nullstellensatz says that if \(f, g \) are polynomials in \(k[x] \) and \(\phi \) is a map of rings in the other direction (see algebraic geometry for details).

\[\sqrt{I} \]

The answer is the rank 1 matrices. These can be written as \(uv \) such that \(M \times N \rightarrow M \otimes N \) is bilinear, then there exists a unique \(\tilde{\phi} \) such that

\[M \times N \rightarrow M \otimes N \]

\[\phi \]

\[\tilde{\phi} \]

\[P \]

Proposition 2.2. The tensor product satisfies the following universal property:

if \(\varphi \) a bilinear map \(\varphi : M \times N \rightarrow P \) that is bilinear, then there exists a unique \(\tilde{\varphi} \) such that

\[M \times N \rightarrow M \otimes N \]

\[\varphi \]

\[\tilde{\varphi} \]

\[P \]

Geometric Interpretation

Given \(X \subseteq k^n \), we can form \(I(X) = \{ f \in k[x_1, \ldots, x_n] : f(x) = 0 \forall x \in X \} \).

Hilbert’s Nullstellensatz says that if \(k \) is algebraically closed, then \(I(V(I)) = \sqrt{I} \).

Coordinate ring of a variety \(V \) is \(S/I(V) \), and maps of varieties correspond to maps of rings in the other direction (see algebraic geometry for details).

If \(M \) is the coordinate ring of \(V \), \(N \) is for \(U \) and \(R \) is for \(W \). If \(f : V \rightarrow W \) and \(g : U \rightarrow W \), then the fiber product of \(V \) and \(U \) over \(W \) is \(F = \{ (u, v) \in U \times V : f(u) = g(v) \} \). The universal property it satisfies is that \(\varphi : Z \rightarrow U \times V \) such that \(f \circ \pi_1 \circ \varphi = g \circ \pi_2 \circ \varphi \) then

\[Z \]

\[M \]

\[U \times V \]

\[\pi_1 \]

\[\pi_2 \]

\[U \]

\[V \]

\[F \]

\[W \]

Point: the map \(V \rightarrow W \) gives a map \(\varphi : R \rightarrow M \) which makes \(M \) an \(R \)-module by \(rm = \varphi(r)m \).

Claim: \(M \otimes_R N \) is the coordinate ring of the fiber product \(f \), eg, \(k[x_1, \ldots, x_n] \otimes_R k[y_1, \ldots, y_m] \simeq k[x_1, \ldots, x_n, y_1, \ldots, y_m] \).
Claim: \(- \otimes_R M\) is a right exact functor from \(R\)-mod to \(R\)-mod.

If \(\varphi : M \to M'\), then \(\varphi \otimes N : M \otimes_R N \to M' \otimes_R N\) comes from the bilinear map \(\psi : M \times N \to M' \otimes_R N\) by \(\psi(m, n) = \varphi(m) \otimes_R n\).

Now we check right exactness. Suppose \(A \to B \to C \to 0\) is exact. We want to show that \(A \otimes_R N \xrightarrow{\alpha \otimes 1} B \otimes_R N \xrightarrow{\beta \otimes 1} C \otimes_R N \to 0\). To see that \(\beta \otimes 1\) is surjective, note that if \(c \otimes n \in C \otimes N\) then there is \(b \in B\) with \(\beta(b) = c\), so \(\beta \otimes 1(b \otimes n) = c \otimes n\).

To show that the other step is exact, we’ll show that \(C \otimes N \simeq B \otimes_R N/\alpha \otimes 1(A \otimes_R N)\). We’ll do this by checking that \(B \otimes N/A \otimes N\) satisfies the universal property of \(C \otimes N\). Suppose that \(\varphi : C \times N \to P\) is a bilinear map with \(\varphi(re, n) = \varphi(c, rn) = r \varphi(c, n)\). Define \(\tilde{\psi} : B \times N \to P\) by \(\tilde{\psi}(b, n) = \varphi(\beta(b), n)\). Then \(\tilde{\psi}\) is bilinear. Thus, there exists a unique \(\tilde{\psi} : B \otimes_R N \to P\) an \(R\)-module homomorphism. We now show that \(\alpha \otimes 1(A \otimes N) \subseteq \ker \tilde{\psi}\). \(\tilde{\psi}(\alpha \otimes 1(a \otimes n)) = \tilde{\psi}(\alpha(a) \otimes n) = \varphi(\beta \circ \alpha(a), n) = \varphi(0, n) = 0\).

Thus, we get a unique induced \(R\)-mod homomorphism \(\tilde{\psi} : B \otimes_R N/\alpha \otimes 1(A \otimes_R N) \to P\) so by the universal property, \(B \otimes_R N/\alpha \otimes 1(A \otimes_R N) \simeq C \otimes_R N\).

Warning: Tensor is not always left exact! 0 \(\to Z \to Z \to Z/2 \to 0\), tensor with \(Z/2\), and get \(Z \otimes Z_2 \to Z \otimes Z_2 \to Z/2 \otimes Z/2 \to 0\) specifically, \(Z \otimes Z_2 \simeq Z/2\), but the map given by multiplication by 2 is the zero map, so it is not injective.

Definition 2.3 (Flat Module). An \(R\)-module \(M\) is flat iff \(- \otimes_R M\) is exact. That is, if \(P \to P'\) is an injection, so is \(P \otimes M \to P' \otimes M\).

Localization

Motivation: We put the Zariski Topology on \(k^n\), the closed sets are of the form \(V(f)\) for some \(f\). We ask: what are the rational functions defined everywhere on \(k^n \setminus V(f)\)? Well, they’re of the form \(p/f\) where \(p \in S\), \(i \geq 0\), that is, elements of \(S[f^{-1}]\).

Definition 2.4 (Localization). Let \(U \subset R\) be a multiplicatively closed set \((u, u' \in U \Rightarrow uu' \in U, 1 \in U)\).

For an \(R\)-module \(M\), we set \(M[U^{-1}] = \{(m, u) : m \in M, u \in U\}/ \sim \) where \((m, u) \sim (m', u')\) iff \(\exists v \in U\) such that \(v(u'm - um') = 0\). We write \((m, u)\) as \(m/u\).

If \(M = R\), then \(R[U^{-1}]\) is a ring, with \((r/u)(r'/u') = rr'/uu'\).

Example: \(R = M = Z\), \(U = Z \setminus \{0\}\), then \(R[U^{-1}] = Q\).

Check: If \(M\) is an \(R\)-module, then \(M[U^{-1}]\) is also an \(R\)-module by \(r(m, u) = (rm, u)\) and \((m, u) + (m', u') = (um + um', uu')\).

Example: If \(R\) is a domain, then \(U = R \setminus \{0\}\) gives \(R[U^{-1}]\) is the field of fractions, or quotient ring of \(R\). In general, let \(U = \{\text{nonzero divisors in } R\}\), then \(K(R) = R[U^{-1}]\) is the total quotient ring of \(R\).

Example: \(R = k[x], U = \{x^i : i \geq 0\}\), then \(R[U^{-1}] = k[x, x^{-1}]\) is the ring of Laurent Polynomials.

Warning: The localization of a nonzero module can be zero!

Example: \(R = Z, M = Z/5\). Let \(U = \{5^i : i \geq 0\}\). \(M[U^{-1}] = 0\) as \((m, u) \sim (0, 1)\) for all \(m \in Z/5\) as \(5(1m - u0) = 0\).
Proposition 2.3. Let U be a multiplicatively closed set of R and M an R-
module, let $\varphi : M \to M[U^{-1}]$ be an R-module homomorphism $\varphi(m) = m/1$.

Then $\varphi(m) = 0$ \iff there is $u \in U$ with $um = 0$, and if M is a finitely
generated R-module, then $M[U^{-1}]$ is zero \iff there is a $u \in U$ that annihilates M.

Proof. $m/1 = 0/1$ \iff $\exists u \in U$ with $u(1m - u0) = um = 0$.

Suppose M is finitely generated by $\{m_1, \ldots , m_s\}$. If there exists $u \in U$ such
that $um = 0$ for all $m \in M$, then $m/um' = 0/1$ for all $m'/u \in M[U^{-1}]$.
Conversely, suppose that $M[U^{-1}] = 0$, then $m_i/1 = 0$ for all i, so there exists
u_i such that $u_im_i = 0$ for each i, let $u = \prod u_i$. Then $uM = 0$. \square

Notation: For any $U \subset R$, we’ll denote by $R[U^{-1}]$ the localization $R[\tilde{U}]$ where \tilde{U} is the multiplicatively closure of U.

The most important example is if P is a prime ideal of R and $U = R \setminus P$.

Notation: $R[(R \setminus P)^{-1}] = R_P$, and $M[(R \setminus P)^{-1}]_P$.

The residue class field $\kappa(P) = R_P/P_P$, where P_P is $\varphi(P)R_P$.

If $R = \mathbb{Z}$, then $\mathbb{Z}_0 = \mathbb{Q}$, $\kappa(0) = \mathbb{Q}$, $P = (p)$, so $\mathbb{Z}_P = \{a/b : p \nmid b\}$, and

$$P_P = \{a/b : p(a, p \nmid b)\}.$$ Then $\kappa(P) = \mathbb{Z}_P/P_P \simeq \mathbb{Z}/P$.

R_P is an example of a local ring.

Definition 2.5 (Local Ring). A ring R is local if it has a unique maximal ideal.

Proposition 2.4. Let $\varphi : R \to R[U^{-1}]$ be the map $r \mapsto r/1$.

For any ideal $I \subseteq R[U^{-1}]$, we have $I = \varphi^{-1}(I)R[U^{-1}]$. Thus that map
$I \mapsto \varphi^{-1}(I)$ is an injection on the set of ideals in $R[U^{-1}]$ to the set of ideals of R. This preserves inclusions and intersections, and takes primes to primes.

An ideal J is of the form $\varphi^{-1}(I)$ for some ideal $I \subset R[U^{-1}]$ iff $J = \varphi^{-1}(JR[U^{-1}])$ iff for $u \in U$, $ur \in J \Rightarrow r \in J$ for $r \in R$. In particular,
$I \mapsto \varphi^{-1}(I)$ gives a bijection between the primes in $R[U^{-1}]$ and the primes of R not meeting U.

Proof. $I \mapsto \varphi^{-1}(I)$ gives an injection \{primes of $R[U^{-1}]$\} \to \{primes of R\}. Suppose that J is $\varphi^{-1}(I)$. Then $ur \in J$ implies $r \in J$ for $u \in U$, $r \in R$, so $J \cap U = \emptyset$, as otherwise $u \in J \cap U$, then $u1 \in J$, so $1 \in J$, so $J = R$. \square

Corollary 2.5. R_P is a local ring.

Note: If $\varphi : R \to S$ is a ring homomorphism with $\varphi(u)$ a unit of S for all $u \in U$, then if $v(u'r - ur') = 0$, $\varphi(v)(\varphi(u')\varphi(r) = \varphi(u)\varphi(1) = 0$.

Since $\varphi(u)$ is a unit, $\varphi(u')\varphi(r) - \varphi(1)\varphi(1) = 0$ can be written as $\varphi(r)\varphi(u)^{-1} = \varphi(r')\varphi(u')^{-1}$. So we can define $\tilde{\varphi} : R[U^{-1}] \to S$ by $\tilde{\varphi}(r/u) = \varphi(r)\varphi(u)^{-1}$.

In fact, we have a universal property of localization: If $\varphi : R \to S$ is a ring
homomorphism with $\varphi(u)$ a unit for all $u \in U$, then $\exists \tilde{\varphi}$ such that the following diagram commutes:
If $\varphi : M \to N$ is an R-module homomorphism, then $\tilde{\varphi} : M[U^{-1}] \to N[U^{-1}]$ defined by $\varphi(m/n) = \varphi(m)/u$ is an $R[U^{-1}]$ homomorphism.

Check well defined: $m/u = m'/u'$ implies $\exists v$ with $v(mu' - um') = 0$, so $v(u'\varphi(m) - u\varphi(m')) = 0$.

Lemma 2.6. The map of R-modules $\alpha : R[U^{-1}] \otimes_R M \to M[U^{-1}]$ by $\alpha(r/u \otimes m) = rm/u$ is an isomorphism.

Proof. We must first check that α is well defined. Define $\tilde{\alpha} : R[U^{-1}] \times M \to M[U^{-1}]$ by $(r/u, m) \mapsto rm/u$. This is bilinear and $\tilde{\alpha}(rs/u, m) = \tilde{\alpha}(r/u, sm) = rsm/u$, so we get a map on the tensor product.

Now define and inverse map $\beta : M[U^{-1}] \to R[U^{-1}] \otimes_R M$ by $m/u \mapsto 1/u \otimes_R m$. This is well defined, as $m'/u' = m/u$ means that for some $v \in U$, $v(um' - um) = 0$, so $\beta(m/u) = \frac{1}{v} \otimes_R m = vu'/vu' \otimes_R m = \frac{1}{vu'} \otimes_R vu'm = \beta(m'/u')$.

Check that it is an R-module homomorphism.

Finally, check that $\beta = \alpha^{-1}$. $\beta \circ \alpha(r/u \otimes m) = \beta(rm/u) = 1/u \otimes rm = r/u \otimes m$.

$\alpha \circ \beta(m/u) = \alpha(1/u \otimes m) = rm/u$. \hfill \Box$

Lemma 2.7. $R[U^{-1}]$ is a flat R-module.

Proof. Suppose that $0 \to A \xrightarrow{\alpha} B \to C \to 0$ is exact. It is enough to show that $A \otimes_R R[U^{-1}] \xrightarrow{\alpha \otimes 1} B \otimes_R R[U^{-1}]$ is injective. These are isomorphic, by the previous lemma, to $A[U^{-1}] \to B[U^{-1}]$ with $\tilde{\alpha}(a/u) = \alpha(a)/u$ is injective.

Suppose $\tilde{\alpha}(a/u) = 0$ so there exists $v \in U$ with $v\alpha(a/u) = 0, \alpha(a)/u = 0$ in $B[U^{-1}]$, so there is $v \in U$ with $v'(\alpha(a) - a0) = 0$, so $v'v(\alpha(a)) = 0$, so $\alpha(v'va) = 0$. α is injective, so $v'va = 0$, so a/u is 0 in A. \hfill \Box$

Exercise: $M_1, M_2 \subseteq M$ are R-modules, show that $(M_1 \cap M_2)[U^{-1}] = M_1[U^{-1}] \cap M_2[U^{-1}]$.

Hint: $0 \to M_1 \cap M_2 \to M \to M/M_1 \oplus M/M_2$ is exact.

Next: True Locally often implies True Globally

Lemma 2.8. Let R be a ring, M an R-module

1. If $m \in M$ then $m = 0$ if and only if $m/1 = 0$ in each localization of M at a maximal prime m of R.

2. $M = 0$ iff $M_m = 0$ for each maximal ideal m of R.

8
Proof. $m/1$ is zero in M_m if any only if $\exists u \notin m$ with $um = 0$. i.e, the annihilator of m in M, $I = \{ r \in R : rm = 0 \}$ is not contained in m. So if $m/1 = 0$ in every localization of M at a maximal prime, then I is not contained in any maximal ideal of R, which is a contradiction, so $m = 0$. \qed

Corollary 2.9. Let $\alpha : M \to N$ be an R-module homomorphism. Then α is injective, surjective or isomorphism iff $\alpha_m : M_m \to N_m$ is injective, surjective or isomorphism for all maximal ideals m of R.

Proof. We have $0 \to \ker \alpha \to M \xrightarrow{\alpha} N \xrightarrow{\alpha_m} M_m \to coker \alpha \to 0$. So $0 \to \ker(\alpha)_m \to M_m \to N_m \to coker(\alpha)_m \to 0$ so if α_m is injective for all m, then $\ker(\alpha)_m = 0$ for all m so $\ker \alpha = 0$, similarly for $\coker \alpha$. \qed

Next: $(S$ is an R-algebra) $S \otimes_R \text{hom}(M,N) \to \text{hom}_S(S \otimes_R M,S \otimes_R N)$ by $s \otimes_R \varphi \mapsto s \otimes \varphi = s(1 \otimes \varphi)$. Check that this is well-defined.

Define $\tilde{\alpha} : S \times \text{hom}_R(M,N) \to \text{hom}_S(-,-)$ by $\tilde{\alpha}(\varphi) = s(1 \otimes \varphi) \in \text{hom}_S(S \otimes_R M,S \otimes_R N)$ is bilinear and respects the R-action, so α is well defined. We’ll see that it is an isomorphism if S is a flat R-module and M is finitely presented.

Recall: M is finitely generated iff $\exists a$ such that $R^2 \xrightarrow{\alpha} M \to 0$ is exact. It finitely presented if $\ker \alpha$ is also finitely generated.

Fact: If R is Notherian then finitely generated implies finitely presented.

A corollary of this is that if M is finitely presented, then $\text{hom}_R(M,N)$ localizes, that is, $\text{hom}_R[M^{-1}](M[U^{-1}],N[U^{-1}]) \simeq \text{hom}_R(M,N)[U^{-1}]$.

Lemma 2.10. If R is Notherian and M is finitely generated, then every submodule of M is finitely generated. Thus, every finitely generated module is finitely presented.

Proof. If M is f.g., then $\exists R^s \xrightarrow{\varepsilon} M \to 0$, and $\ker \varphi$ is a submodule of the finitely generated R-module R^s, so the second sentence follows from the first.

Now suppose that N is a submodule of M, where M is gen by m_1, \ldots, m_s. The proof is by induction on s. If $s = 1$, then $M \simeq Rm_1$, we let $I = \ker(R \to M)$, so $M \simeq R/I$. Thus, $\varphi^{-1}(N)$ is an ideal in R, so $\varphi^{-1}(N)$ is finitely generated by n_1, \ldots, n_k, since R is Notherian, so $\varphi(n_1), \ldots, \varphi(n_k)$ generate N.

Now suppose that the lemma holds for all $s' < s$. Consider $\tilde{N} \subseteq M/Rm_1$ is generated by m_2, \ldots, m_s, so by induction \tilde{N} is generated by $\{g_i \in N, 1 \leq i \leq \ell \}$. Also, $N \cap Rm_1$ is finitely generated by h_1, \ldots, h_r. So for $n \in N$, $\bar{n} = \sum r_i g_i$ and $n - \sum r_i g_i \in N \cap Rm_1$, so $n - \sum r_i g_i = \sum r_j h_j$ so $g_1, \ldots, g_t, h_1, \ldots, h_r$ generate N. \qed

This is NOT true if R is not Notherian. eg $R = k[x_1,x_2,\ldots]$, $M = R$, $N = (x_1, \ldots, x_n, \ldots)$ is an infinitely generated submodule of M.

Next: Move towards localization of hom.

Proof. We first prove the proper when $M = R$. $\alpha_R : S \otimes_R \text{hom}_R(R,N) \to \text{hom}_S(S \otimes_R R,S \otimes_R N)$ by $s \otimes \varphi \mapsto s(1 \otimes \varphi)$. $S \otimes \varphi(1) \to s((1 \otimes \varphi)(1 \otimes 1)) = s \otimes \varphi(1)$.

9
3 Primary Decomposition

Consider $V(xy) \subseteq \mathbb{C}^2$. Then $V(xy) = V(x) \cup V(y)$, so we can break it into irreducible varieties.

Proposition 3.1. A variety $V(I) \subseteq k^n$ can be written uniquely as $V_1 \cup \ldots \cup V_k$ where V_i are irreducible subvarieties and no $V_i \subset V_j$ for $i \neq j$.

Proof. We first show that such a decomposition exists. Let \mathcal{S} be the set of all varieties V that do not have such a decomposition into irreducibles. Since $k[x_1, \ldots, x_n]$ is Nötherian, \mathcal{S} has a minimal element, $V(I)$. Since $V(I)$ is in \mathcal{S}, it is not irreducible, so we can write $V(I) = V_1 \cup V_2$ for V_1, V_2 proper subvarieties. One of these must not have an irreducible decomposition, else $V(I)$ would, but this contradicts minimality of $V(I)$.

For uniqueness, suppose that $V(I) = V_1 \cup \ldots \cup V_k = V'_1 \cup \ldots \cup V'_j$. So $V'_1 = V'_1 \cap V(I) = (V'_1 \cap V_1) \cup \ldots \cup (V'_1 \cap V_k)$. V'_1 is irreducible, and each of these is a subvariety of V'_1, so as V'_1 is irreducible, we must have some V_i such that $V'_1 \cap V_i = V'_1$ so $V'_1 \subseteq V_i$. Then $V_i = (V'_1 \cap V_i) \cup (V'_j \cap V_i) \cup \ldots \cup (V'_k \cap V_i)$, so there is a j such that $V_i = V'_j \cap V_i$, so $V_i \subseteq V'_j$, so $V'_1 \subseteq V_i \subseteq V'_j$, so $j = 1$. Consider $Z = V'_1 \cup \ldots V'_j = V_1 \cup \ldots \cup V_i \cup \ldots \cup V_k = V(I) \setminus V'_1$, and then induction. □

Note: If $I = \sqrt{I}$ and $V(I)$ is irreducible, I is prime.

Definition 3.1 (Associated Prime). Let R be a ring and M an R-module. A prime P of R is associated to M if it is the annihilator of an element of M. We write $\text{Ass}_R(M)$ for the set of all associated primes of M as an R-module.

Notation: If $I \subseteq R$ is an ideal, write $\text{Ass}_R(I)$ for $\text{Ass}_R(R/I)$. We can get away with this, because $\text{Ass}_R(I)$ is rarely interesting, eg, if R is a domain, then $\text{Ass}_R(M) = \{(0)\}$ for $M = I$.

eg, if P is prime, $\text{Ass}_R(P) = \{P\}$.

eg, if $V = V_1 \cup \ldots \cup V_k$, is the irreducible decomposition of a variety V, then $I(V_1)$ will be the associated primes of $I(V)$.

eg, $R = \mathbb{Z}$, $\text{Ass}_{\mathbb{Z}}(n) = \text{Ass}_{\mathbb{Z}}(\mathbb{Z}_n) =$ set of prime factors

Lemma 3.2. If R is Nötherian then $R[U^{-1}]$ is Nötherian.

Proof. Let I be an ideal in R. Then $I = \varphi^{-1}(I)R[U^{-1}]$ where $\varphi : R \to R[U^{-1}]$ has $\varphi(r) = r/1$. Then $\varphi^{-1}(I)$ is an ideal of R, so finitely generated and, φ of those generators must generate I. □
This shows that "Nötherian" is "better" than "finitely generated over a field", i.e., quotient of a polynomial ring.

Lemma 3.3 (Prime Avoidance). Suppose that I_1,\ldots,I_n, J are ideals of R and $J \subseteq \bigcup_{j=1}^n I_j$. If R contains an infinite field, or if all but two of the I_j are prime, then J is contained in one of the I_j. If R is \mathbb{Z}-graded and J is generated by homogeneous elements of deg > 0, and all the I_j are prime, then it is enough to assume that all homogeneous elements of J are contained in $\bigcup I_j$.

Proof. If R contains an infinite field k, then J is a k-vector space, also each $J \cap I_j$ is a k-vector subspace. If $J \not\subseteq I_j$ for all j, then $J \cap I_j$ is a proper subspace of J, but $J = \bigcup_{j=1}^n J \cap I_j$, and we cannot write a vector space over an infinite field as a finite union of proper subspaces. If one $I_j \subseteq J$, then quotient by it and repeat.

Now consider a general R, but all but two of the I_j are prime. The proof is by induction on n. If $n = 1$, then $J \subseteq I_1$.

If $n = 2$, $J \subseteq I_1 \cup I_2$, if $J \not\subseteq I_1$, $J \not\subseteq I_2$ we can find $x_1 \in J \cap I_1 \setminus I_2$ and $x_2 \in J \cap I_2 \setminus I_1$. But then $x_1 + x_2 \in J_1$, so $x_1 + x_2 \in I_1 \cup I_2$, but $x_1 + x_2 \notin I_1, I_2$, a contradiction.

Suppose $n > 2$, $J \subseteq \bigcup I_j$, $J \not\subseteq I_j$. So again we take $x_i \in J \cap I_i \setminus \bigcup_{j \neq i} I_j$. After reordering, we may assume that I_1 is prime. Consider $f = x_1 + \prod_{j=2}^n x_j \in J$. $x_1 \in I_1 \setminus \bigcup_{j=2}^n I_j$, the product is in $J \cap \bigcap_{j=2}^n I_j \setminus I_1$, since I_1 is prime. So $f \in I_1$ but $f \notin I_j$ for any j, a contradiction.

Finally, assume R is graded. The Proof is almost the same. In the $n = 2$ case, we need to consider $x_1^k + x_2^\ell$ for some k, ℓ to make $x_1^k + x_2^\ell$ homogeneous. \hfill \square

Proposition 3.4. Let R be a ring and M an R-module. If I is maximal among all ideals of R that are annihilators of elements of M, then I is prime and so belongs to $\text{Ass}_R(M)$. Thus, if R is Nötherian, $\text{Ass}_R M$ is nonempty and $\cup_{P \in \text{Ass}_R(M)} P = 0 \cup \{\text{zero divisors of } M\}$. (That is, $r \in R$ nonzero such that $\exists m \neq 0$ with $rm = 0$)

Proof. Let P be such an ideal maximal with respect to the property of annihilating an element of M. Let $rs \in P$ for $r, s \in R$. Let $m \in M$ have $P = \text{Ann}_R(m)$. Then if $sm = 0$, we have $s \in P$. Otherwise $(rs)m = r(sm) = 0$ so $r \in \text{Ann}_R(sm)$. But also if $p \in P$, $psm = s(pm) = 0$, so $r + P \subseteq \text{Ann}_R(sm)$. Since $sm \neq 0$, $\text{Ann}_R(sm) \neq R$, so $\text{Ann}_R(sm) = P$. So $r \in P$. This shows that P is prime. We now check that $\cup_{P \in \text{Ass}_R(M)} P = 0 \cup \{\text{zero divs}\}$. If $0 \neq p \in P \in \text{Ass}_R(M)$, then $\exists m \in M$ with $pm = 0$, so p is a zero divisor on M. This shows \subseteq. Conversely, if $r \neq 0$ is a zero divisor, then $\exists m \in M$ with $rm = 0$, so $r \in \text{Ann}_R M$. Let P be an ideal containing $\text{Ann}_R M$ that is maximal with respect to annihilating some element of M. Then P is prime so $P \in \text{Ass}_R M$, so $r \in P$. \hfill \square

Corollary 3.5. Suppose that M is a module over a Nötherian ring R.

1. If $m \in M$, then $m = 0$ iff $m/1 = 0 \in M_P$ for all maximal associated primes of M.

11
2. If K is a submodule of M, then $K = 0$ iff $K_P = 0$ for all maximal $P \in \text{Ass } M$.

3. If $\varphi : M \to N$ is an R-module homomorphism, then φ is an injective iff $\varphi_P : M_P \to N_P$ is an injection for each $P \in \text{Ass } M$.

Proof. If $0 \neq m \in M$, then $\exists P \in \text{Ass } M$ containing $\text{Ann } m$. Then some $P \cap \text{Ann } m = \{0\}$, we get $m/1 \neq 0$ in M_P. If $\text{Ann } M = 0$, then any P works. We take P maximal to get the result. Part 1 implies 2 and 2 implies 3.

Q: How can we find ALL associated primes?

Lemma 3.6. If R is a Noetherian ring and M is a finitely generated R-module, then M has a filtration $0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n = M$ with $M_{i+1}/M_i \cong R/P_i$ for some prime P_i of R.

Proof. If $M \neq 0$ then there is an associated prime $P_1 \in \text{Ann}(m_1)$ for $m_1 \in M$. Set $M_1 = Rm_1 \cong R/P_1$. If $M_1 \neq M$, consider M/M_1. This has an associated prime $P_2 = \text{Ann}(m_2)$, set $M_2 = M_1 + Rm_2$. By construction, $M_2/M_1 \cong R/P_2$. Continue in this fashion, this must terminate with some $M_i = M$, else we would have an infinite ascending chain of submodules of M. This is impossible as M is finitely generated over a Noetherian ring.

Lemma 3.7. M is an R-module.

1. If $M = M' \oplus M''$, then $\text{Ass } R(M) = \text{Ass } R(M') \cup \text{Ass } R(M'')$

2. If $0 \to M' \overset{s}{\to} M \overset{r}{\to} M'' \to 0$ is a s.e.s. of R-modules, then $\text{Ass } R(M') \subseteq \text{Ass } R(M) \subseteq \text{Ass } R(M') \cup \text{Ass } R(M'')$.

Proof. 1. Follows from 2.

2. Suppose $m \in M'$ with $\text{Ann } R(m) = P$ prime. Then $\text{Ann } R(i(m)) = P$, so $O \in \text{Ass } R(M)$.

Now suppose $P \in \text{Ass } R(M) \setminus R(M')$. $P = \text{Ann } R(m)$ for $m \in M$. So $Rm \cong R/P$. Now for all $r \in R$ with $rm \neq 0$, we have $\text{Ann } R(rm) = P$, since $s \in P \Rightarrow srm = 0$ and if $srm = 0$ then $sr \in P$, and $r \notin P$ (since $rm \neq 0$) so $s \in P$. This means that $Rm \cap i(M') = \{0\}$.

We now claim that $\text{Ann } R(p(m)) = P$ since $Rp(m) = p(Rm) \cong Rm = R/P$, so $P \in \text{Ass } R(M'')$.

Corollary 3.8. If R is Noetherian, M finitely generated, and $0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n = M$ with $M_i/M_{i-1} \cong R/P_i$, then $\text{Ass } R(M) \subseteq \{P_1, \ldots, P_n\}$, so $\text{Ass } R(M)$ is a finite nonempty set.
Proof. When \(n = 1, M = R/P_1 \), which has \(\text{Ass}_R(R/P_1) = \{ P_1 \} \).

For \(n > 1 \), \(0 \to M_1 \to M \to M/M_1 \to 0 \) is ses, both ends have filtrations, the first \(0 \subsetneq M_1 \), the second \(0 \subsetneq M_2/M_1 \subsetneq M_3/M_2 \subsetneq \ldots \subsetneq M/M_1 \). By induction, \(\text{Ass}_R(M_1) \subseteq \{ P_1 \} \), and \(\text{Ass}_R(M/M_1) \subseteq \{ P_2, \ldots, P_n \} \), so \(\text{Ass}_R(M) \subseteq \{ P_1, \ldots, P_n \} \).

eg, \(k[x, y]/(x^2y, xy^2) \) has \(0 \not\subseteq R[y]/(x^2y, xy^2) \not\subsetneq R[x, y]/(x^2y, xy^2) \not\subsetneq R[x, y]^2/(x^2y, xy^2) \not\subsetneq M \).

Now \(R[y]/(x^2y, xy^2) = R/(x) \) and \(R[x, y]/(x^2y, xy^2)/R[y]/(x^2y, xy^2) \not\subsetneq R/(x) \) and \(M_3/M_2 \not\subsetneq R/(x, y) \). Set \(M_4 = R[x, y]/(x^2y, xy^2) \), \(M_5/M_4 \not\subsetneq R/(x, y) \), and \(M = R/(x^2y, xy^2) \) and \(M/M_5 \not\subsetneq R/(x, y) \). So we now have a filtration \(0 \subsetneq M_1 \subsetneq M_2 \subsetneq M_3 \subsetneq M_4 \subsetneq M_5 \subsetneq M \), so \(P_1 = (x), P_2 = (y), P_3 = P_4 = P_5 = (x, y) \).

Warning: There is not always a filtration with all \(P_i \) associated! e.g. \(R = k[x, y, z, w], I = (x, y) \cap (z, w) = (xz, zw, yz, yw) \).

Claim: \(\text{Ass}_R(I) = \{ (x, y), (z, w) \} \). Claim 2: There is no filtration \(0 \subsetneq M_1 \subsetneq M \) with \(M_1 \not\subsetneq R/(x, y) \), \(M/M_1 \not\subsetneq R/(z, w) \).

Theorem 3.9. \(R \) Noetherian, \(M \) is finitely generated.

1. Associated primes commutes with localization, ie \(\text{Ass}_{R[U^{-1}]}(M[U^{-1}]) = \{ PR[U^{-1}] | P \in \text{Ass}_R(M) \text{ with } P \cap U = \emptyset \} \)

2. \(\text{Ass}_R(M) \) contains all primes minimal over \(\text{Ann}_R(M) \).

Proof. If \(P \in \text{Ass}_R(M) \), then there exists \(m \in M \) with \(P = \text{Ann}_R(m) \). So \(Rm \simeq R/P \), and we get an inclusion \(R/P \to M \). As localization is exact, \((R/P)[U^{-1}] \to M[U^{-1}] \) is an inclusion, so if \(P \cap U = \emptyset \), \(PR[U^{-1}] \) is prime in \(R[U^{-1}] \), then \(PR[U^{-1}] \in \text{Ass}_{R[U^{-1}]}(M[U^{-1}]) \).

Conversely, suppose that \(Q \in \text{Ass}_{R[U^{-1}]}(M[U^{-1}]) \), then \(Q = PR[U^{-1}] \) for some prime \(P \) of \(R \) with \(P \cap U = \emptyset \). Since \(R \) is Noetherian, we know that \(R[U^{-1}] \) is, so \(PR[U^{-1}] \) is finitely generated. Thus, \(R[U^{-1}]/PR[U^{-1}] \) is finitely presented. So, \(\text{Ann}_R(PR[U^{-1}]/PR[U^{-1}], M[U^{-1}]) \not\subsetneq \text{hom}_R(R[P, M][U^{-1}]) \), thus the inclusion \(\varphi : R[U^{-1}]/Q \to M[U^{-1}] \) must be \(f/u \) for some \(g \in \text{hom}_R(R/P, M) \) since \(\varphi \) is injective, so is \(f \), and so \(R/P \to M \) is an injection, so \(P \in \text{Ass}_R(M) \).

For part 2, we consider the \(R_P \) module \(M_P \) with \(P \) a minimal prime over \(\text{Ann}_R(m) \). \(\text{Ass}_{R_P}(M_P) \not\subseteq \emptyset \) and if \(Q \in \text{Ass}_{R_P}(M_P) \), then \(P_P = Q \not\subseteq P_P \), but if \(P_P \subseteq P_P \) then \(P_P \not\subseteq \text{Ann}_R(M) \), so there is \(r \in \text{Ann}_R(M) \) with \(r \not\subseteq P \) so that \(r/1 \not\subseteq P_P \) and \(r/1 \in \text{Ann}_{R_P}(M_P) \). Thus, \(\text{Ann}_{R_P}(M_P) \not\subseteq P_P \), so \(P_P \) is not associated.

This means that \(\text{Ass}_{R_P}(M_P) = \{ P_P \} \), so \(P \in \text{Ass}_R(M) \).

Fact: If \(I \) is radical then \(I = \cap P \) for \(P \) a prime containing \(I \) or for \(P \) primes minimal wrt containing \(I \).

Lemma 3.10. If \(R \) is commutative, \(U \) is multiplicatively closed and \(I \) is maximal among ideals not meeting \(U \), then \(I \) is prime.
Lemma 3.13. If \(\{ \) is equal to \(\mathfrak{a} \cap \mathfrak{b} \), then \(\mathfrak{a} + \mathfrak{b} = \mathfrak{c} \), so there exists \(\mathfrak{i}, \mathfrak{i}' \in \mathfrak{a} \) with \(\mathfrak{i} \mathfrak{f}, \mathfrak{i}' + \mathfrak{r}' \mathfrak{g} \in \mathfrak{U} \) so \((i \mathfrak{f} + r' \mathfrak{g}) \in \mathfrak{U} \), is equal to \(i \mathfrak{i}' + r \mathfrak{r}' \mathfrak{g} + r' \mathfrak{r} \mathfrak{f} \mathfrak{i} + r' \mathfrak{r}' \mathfrak{g} \in \mathfrak{I} \), contradicting that \(\mathfrak{I} \cap \mathfrak{U} = \emptyset \).

So either \(\mathfrak{f} \in \mathfrak{I} \) or \(\mathfrak{I} \), so \(\mathfrak{I} \) is prime.

Corollary 3.11. If \(\mathfrak{I} \subseteq \mathfrak{R} \) is an ideal, then \(\sqrt{\mathfrak{I}} = \cap \mathfrak{P} \) over primes containing \(\mathfrak{I} \). In particular, the intersection of all primes is \(\sqrt{\mathfrak{a}} \), the set of nilpotents.

Proof. \(\sqrt{\mathfrak{I}} \subseteq \cap \mathfrak{P} \) is straightforward.

Suppose that \(\mathfrak{f} \in \cap \mathfrak{P} \setminus \sqrt{\mathfrak{I}} \). \(\mathfrak{U} = \{ f^i : i \geq 0 \} \), then \(\sqrt{\mathfrak{I}} \cap \mathfrak{U} = \emptyset \). Let \(\mathfrak{J} \) be an ideal containing \(\sqrt{\mathfrak{I}} \) max wrt \(\mathfrak{J} \cap \mathfrak{U} = \emptyset \), then \(\mathfrak{J} \) is prime which contains \(\mathfrak{I} \), so \(\mathfrak{f} \in \mathfrak{J} \), contradiction, so \(\cap \mathfrak{P} = \sqrt{\mathfrak{I}} \). \(\square \)

Corollary 3.12. If \(\mathfrak{I} = \sqrt{\mathfrak{J}} \), then \(\mathfrak{I} = \cap \mathfrak{P} \), \(\mathfrak{P} \) minimal over \(\mathfrak{I} \), and \(\operatorname{Ass}(\mathfrak{I}) = \{ \mathfrak{P} \mid \mathfrak{P} \text{ is minimal over } \mathfrak{I} \} \).

Next time, \(\mathfrak{I} = \cap Q_i \), \(\sqrt{Q} \in \operatorname{Ass}(\mathfrak{I}) \).

As \(\sqrt{\mathfrak{I}} = \cap \mathfrak{P} \), \(\mathfrak{P} \) prime and \(\mathfrak{I} \subseteq \mathfrak{P} \). \(\cap \mathfrak{P} \) over all primes are the nilpotent elements, and \(\cap_{\mathfrak{P} \in \operatorname{Ass}} \mathfrak{P} = \sqrt{\Lambda} \).

First, IOUs.

1. If \(\mathfrak{R} \) is f.g. over a field, \(\mathfrak{R}[U^{-1}] \) doesn’t have to be. \(kx \), for example.

Suppose that \(k[x]|_{(x)} \) as a \(k \)-algebra by \(f_1/g_1, \ldots, f_r/g_r \). Assume \(k \) is algebraically closed, look at the factors of the \(g_i \). Only finitely many \(x - \alpha \) show up, but \(k \) is infinite, so these cannot generate everything.

2. We looked at \(= (x, y) \cap (z, w) = \cap \mathfrak{P} \). Suppose that \(P_1 \cap P_2 \cap P_3 \cap P_4 \cap \ldots \), \(P_i \), irredundant, all \(P_i \) necessary. So \(P_1 \cap P_2 \subseteq P_3 \), so \(P_1 P_2 \subseteq P_3 \), so \(P_1 \subseteq P_3 \) or \(P_2 \subseteq P_3 \), and so by irredundancy, \(P_3 = P_1 \) and \(P_4 = P_2 \).

Lemma 3.13. If \(\mathfrak{I} = \sqrt{\mathfrak{I}} \), then \(\operatorname{Ass}(\mathfrak{I}) = \{ \mathfrak{P} \mid \mathfrak{P} \text{ minimal over } \mathfrak{I} \} \).

This is because \(\mathfrak{I} = \cap \mathfrak{P} \) over the primes minimal over \(\mathfrak{I} \).

In general, we replace primes by ideals with only one associated prime. \(\operatorname{Ass}(\mathfrak{R}/\mathfrak{P}) = \{ \mathfrak{P} \} \).

Definition 3.2 (P-primary). Let \(\mathfrak{R} \) be a Noetherian ring and \(M \) a finitely generated \(\mathfrak{R} \)-module.

A submodule \(N \subseteq M \) is \(\mathfrak{P} \)-primary if \(\operatorname{Ass}(M/N) = \{ \mathfrak{P} \} \).

Proposition 3.14. Let \(\mathfrak{P} \) be a prime ideal in \(\mathfrak{R} \). Then TFAE

1. \(\operatorname{Ass}(\mathfrak{M}) = \{ \mathfrak{P} \} \)

2. \(\mathfrak{P} \) is minimal over \(\operatorname{Ann}_\mathfrak{R} M \) and every element not in \(\mathfrak{P} \) is a non zero divisor on \(M \).

3. A power of \(\mathfrak{P} \) annihilates \(M \) and every element not in \(\mathfrak{P} \) is a non zero divisor.

14
Proof. 1 \Rightarrow 2: If P is not minimal over $\text{Ann}_R M$, then there exists P' minimal over $\text{Ann}_R M$ with $\text{Ann}_R M \subseteq P' \subsetneq P$. So $P' \in \text{Ass}_R M$. Also, every zero divisor is in some associated prime, so they all lie in P.

2 \Rightarrow 3: Since elements outside of P are non zero divisors, we get $M \to M_P$ injective, so if a power of P_p annihilates M_P that power of P annihilates M. But P_P is minimal over $\text{Ann}_R M$, so every prime is contained in P_P. So $\cap Q$ over $Q \in R_P$ prime, minimal over $\text{Ann}_{R_P} M_P$, is equal to $P_P = \sqrt{\text{Ann}_{R_P} M_P}$. Thus, $\exists k$ such that $P^k_P \subseteq \text{Ann}_{R^k_P} M_P$.

3 \Rightarrow 1: Since $P^k \subseteq \text{Ann}_R M \subseteq P$, and P must be contained in any prime containing $\text{Ann}_R M$, so P is minimal over $\text{Ann}_P M$, so $P \in \text{Ass}_R M$. But also, every associated prime is contained in P, from the nonzero divisor assumption, so P is the only associated prime.

Corollary 3.15. Let I be an ideal in R. TFAE

1. I is P-primary
2. I contains a power of P and for all r, s with $rs \in I$ and $r \notin I$, we have $s \in P$
3. $\sqrt{I} = P$ and for all $r, s \in R$ with $rs \in I$, either $r \in I$ or there is a k such that $s^k \in I$.

Proof. 1 and 2 are equivalent because they are 1 and 3 of the prop.

2 \Rightarrow 3: If $rs \in I$, $r \notin I$, then $s \in P$, so $\exists k$ with $s^k \in I$. Also, $P^k \subseteq I$ for some k. $P \subseteq \sqrt{I}$. If $f \in \sqrt{I} \setminus P$, then $\exists l$ such that $g = f^l \in I \setminus P$. But now $g \cdot 1 \in I$, $1 \notin I$ so $g \in P$, contradiction. Thus, $\sqrt{I} \subseteq P$.

3 \Rightarrow 1: Since $\sqrt{I} = P$, we know $P^k \subseteq I$ for some k, and if $rs \in I$, $r \notin I$, then $\exists l$ such that $s^l \in I$, so $s \in \sqrt{I} = P$.

Theorem 3.16. A proper submodule M' of M is the intersection of primary submodules.

Definition 3.3 (Irreducible Submodule). A submodule N of M is irreducible if it cannot be written as the intersection $N = N_1 \cap N_2$ with $N \subseteq N_1$ and $N \subseteq N_2$.

Lemma 3.17. If M' is a proper submodule of M, then we can write $M' = \cap_{i=1}^k M_i$ where each M_i is irreducible.

Proof. R Nötherian and M finitely generated implies that M is Nötherian.

So if the lemma is false, there exists a submodule N maximal with respect to not having an irreducible decomposition. In particular, N is not irreducible, so we write $N = N_1 \cap N_2$, with $N \subseteq N_1$ and $N \subseteq N_2$. But $N_1 = \cap_{i=1}^k M_i$ and $N_2 = \cap_{j=k+1}^{t} M_j$, so $N = \cap_{i=1}^t M_i$, contradiction.

Lemma 3.18. If $N \subseteq M$ is irreducible, then N is primary.

Proof. Suppose $P \neq Q \in \text{Ass}_R(M/N)$. Then $R/P \simeq R\tilde{m}_1$ for some $\tilde{m}_1 \in M/N$, and $R/Q \simeq R\tilde{m}_2$ for some $\tilde{m}_2 \in M/N$.

$R\tilde{m}_1 \cap R\tilde{m}_2 = \{0\}$, so $(N + \tilde{m}_1) \cap (N + \tilde{m}_2) = N$.

15
Theorem 3.19. Let M' be a proper submodule of M and write $M' = \cap M_i$ where M_i is P_i-primary. Then

1. Every associated prime of M/M' occurs among the P_i.

2. If the decomposition is irredundant, then the P_i are precisely the associated primes.

3. If the intersection is minimal, then each associated prime occurs exactly once, and if P is a minimal associated prime, then M_i is the P-primary component of M'.

Proof. We first note that if $M' = \cap M_i$ with $\text{Ass}_R(M/M_i) = \{P_i\}$, then $0 = \cap(M_i/M') \subseteq M/M'$ with $\text{Ass}_R((M/M')/(M_i/M')) = \{P_i\}$. ie, we can replace M by M/M' and M' by 0, so we will assume that $M' = 0$.

1. So $0 = \cap M_i$, so $M \to \oplus M/M_i$ is an injection. So $\text{Ass}_R(M) \subseteq \text{Ass}_R(\oplus M/M_i) = \cup \text{Ass}_R(M/M_i) = \{P_1, \ldots, P_n\}$.

2. If the decomposition is irredundant, then $\cap_{i \neq j} M_i \neq 0$ for any j. So $\cap_{i \neq j} M_i = \cap_{i \neq j} M_i/(\cap_{i \neq j}(M_i \cap M_j)) \simeq (\cap_{i \neq j} M_i + M_j)/M_j \subseteq M/M_j$. So $\text{Ass}_R(\cap_{i \neq j} M_i + M_j) \subseteq \text{Ass}_R(M/M_j) = \{P_j\}$, so $\text{Ass}_R(\cap_{i \neq j} M_i + M_j) = \{P_j\}$, so $O_j \in \text{Ass}_R(M)$.

3. We first note that if $N_1, N_2 \subseteq M$ with $\text{Ass}(M/N_i) = \{P_i\}$ for $i = 1, 2$, then $M/N_1 \cap N_2 \to M/N_1 \oplus M/N_2$ is an inclusion, so $\text{Ass}(M/N_1 \cap N_2) \subseteq \text{Ass}(M/N_1 \oplus M/N_2) = \{P_i\}$, so $\text{Ass}(M/N_1 \cap N_2) = \{P_i\}$. Thus if $P_i = P_j$ we can replace M_i, M_j by $M_i \cap M_j$ to get a primary decomposition with fewer terms. So each P_i shows up at most once. But minimal implies irredundant, so each P_i shows up exactly once.

Now suppose that P_i is minimal over $\text{Ann}_R M$. We want to show that $M_i = \ker(M \to M_{P_i})$. Consider the diagram

$$
\begin{array}{c}
M \\
\alpha \downarrow \\
M/M_i \\
\downarrow \beta \\
(M/M_i)_{P_i} \\
\gamma \downarrow \\
\end{array}
$$

We have $M_i = \ker \beta$. So show that $M_i = \ker \alpha$, it suffices to check that δ, γ are injections. δ is because $\text{Ass}(M/M_i) = \{P_i\}$. Since $\cap M_j = 0$, $\phi : M \to \oplus M/M_j$ localizes to $\phi_{P_i} : M_{P_i} \to \oplus (M/M_i)_{P_i}$. γ is the ith component of ϕ_{P_i}. To see that γ is injective, it suffices to note that $(M/M_i)_{P_i} = 0$. If it weren't zero, we would have $\text{Ass}_{R_{P_i}}((M/M_i)_{P_i} = \{QR_{P_i} | Q \in \text{Ass}_R(M/M_i) \text{ with } Q \cap (R \setminus P_i) = \emptyset\} = \{QR_{P_i} | Q = P_j \text{ and } Q \subseteq P_i\}$, which is empty as P_i is minimal.

\square
Theorem 4.1. Let $\phi: R \rightarrow R$ be a finitely generated torsion free abelian group and let $R = \@_{a \in A} R_a$ and M be a graded R-module. If $P = \text{Ann}_R M$ for any $m \in M$ and P is prime, then P is homogeneous and P is the annihilator of a homogeneous element.

Proof. $A \simeq \mathbb{Z}^k$ for some k. Choose the isomorphism and $w \in \mathbb{R}^k$ sufficiently general and set $u < u'$ for $u, u' \in \mathbb{R}^k$ if $w \cdot u < w \cdot u'$. (sufficiently general means that this is a total order).

Note that if $u < u'$ then $u + v < u' + v$. If P is not homogeneous, then there exists $f \in P$ and $a \in A$ with $f_a \not\in P$ where $f = \sum a_i f_a$. We can assume in fact that no $f_a \in P$. Write $m = \sum m_a$. Then $0 = fm = f_1m_1 + \text{HOT}$ where $\deg f_1 = \min\{a_i f_a \neq 0\}$ and $\deg m_1 = \{a_i m_a \neq 0\}$. So $f_1m_1 = 0$. So if $m = m_1$ done. Otherwise, this is the base case of an induction on the number of nonzero components, b.

Suppose that it is true for small b. Write $f_1m = \sum a_i m_a f_1m_a$, this has fewer terms, so $P \subseteq I = \text{Ann}_R f_1m$. If $P = I$, then P is homogeneous by induction. Otherwise, there is $g \in I \setminus P$ with $gf_1m = 0$ so $gf_1 \in P$ so $f_1 \in P$ as required.

Lemma 3.21. If M is a noetherian R-module and $M' \subseteq M$ with $M' = \bigcap_i M_i$ with M_i P_i-primary is minimal, let U be a multiplicatively closed set of R. Then $M'[U^{-1}] = \bigcap_i M_i[U^{-1}]$ over the submodules with $P_i \cap U = \emptyset$ is a minimal primary decomposition of $M'[U^{-1}]$ as an $R[U^{-1}]$-module.

Proof. $M'[U^{-1}] = \bigcap_i M_i[U^{-1}]$, since localization commutes with intersection. If $P_i \cap U \neq \emptyset$, then $M_i[U^{-1}] = M[U^{-1}]$ since $(M/M_i)[U^{-1}]$ has no associated primes, it must be the zero module.

As $M'[U^{-1}] = \bigcap_i M_i[U^{-1}]$ with $P_i \cap U = \emptyset$, and $\text{Ass}_{R[U^{-1}]}(M[U^{-1}]/M'[U^{-1}]) = \{PR[U^{-1}]\}$ where $P \in \text{Ass}_R(M/M')$ and $P \cap U = \emptyset$. So since $\bigcap M_i$ was minimal, each P_i was in $\text{Ass}_R(M/M')$ and showed up exactly once, so in this new intersection.

4 Integral Dependence

Cayley-Hamilton Theorem

In linear algebra, $p_A(X) = \det(A - xI)$

Cayley-Hamilton says $p_A(A) = 0$.

Slightly more abstractly, if V is a n-dimensional vector space over k, and $\varphi : V \rightarrow V$ is a linear map, then there exists $a_0, \ldots, a_{n-1} \in k$ such that $\varphi^n + \sum_{i=0}^{n-1} a_i \varphi^i = 0$.

Theorem 4.1. Let R be a ring and M a finitely generated R-module that has a generating set with n elements. Let $\varphi : M \rightarrow M$ be an R-module homomorphism. If $\varphi(M) = IM$ for an ideal $I \subseteq R$, then there exists a monic polynomial
p(x) = x^n + p_1 x^{n-1} + \ldots + p_n with p_j \in I^j for each j such that p(\varphi) = 0 as an endomorphism of M.

Proof. Let \(m_1, \ldots, m_n\) be generators for M. Write \(\varphi(m_j) = \sum_{i=1}^{n} a_{ij} m_i\). Let A be the matrix \(A = (a_{ij})\) and \(m = (m_1, \ldots, m_n)^T \in M^n\). Regard M as an \(R[x]\)-module where \(x \cdot m = \varphi(m)\).

Then \((Ix - A)m = 0\) for all \(m \in M\), where \(Ix : M \to M\) where if \(m = \sum r_i m_i, Ix(m) = \sum r_i \varphi(m_i)\), then \(Ix(m_i) = \varphi(m_i)\), and \(Am = \sum_{i=1}^{n} a_{ij} m_j\). Let \(A'\) be the matrix of cofactors of \(Ix - A\), recall from linear algebra that if \(A = (a_{ij})\) then the cofactor matrix \(B\) is \((b_{ij})\) with \(b_{ij} = (-1)^{i+j} \det(A^j)\).

Then \(A'(Ix - A) = \det(Ix - A)I\), that is, \(\det(Ix - A)m = 0\) for all \(m \in M\), so \(\det(Ix - A) \in R[x]\) and is in \(\text{Ann}_{R[z]} \ M\).

Let \(p(x) = \det(Ix - A). p(x)\) has degree \(n\) and \(p(\varphi) = 0\) and if \(p(X) = x^n + \sum_{i=0}^{n-1} p_i x^{n-i}\) then \(p_i \in I^i\).

More linear algebra: If \(\varphi : V \to V\) is surjective, then \(V\) is injective, if \(V\) is a finite dimensional vector space.

Corollary 4.2. Let \(R\) be a ring and let \(M\) be a finitely generated \(R\)-module.

1. If \(\alpha : M \to M\) is a surjective \(R\)-module homomorphism, then \(\alpha\) is an isomorphism.

2. If \(M \cong R^n\) then every set of \(n\) elements that generates \(M\) forms a free basis, in particular, the rank of \(M\) is well-defined.

Proof. 1. Regard \(M\) as a module over \(R[t]\) with \(t\) acting as \(\alpha\), so \(tm = \alpha(m)\).

Set \(I = (t) \subseteq R[t]\), then \(IM = M\) since \(\alpha\) is surjective. Apply Cayley-Hamilton to the identity homomorphism, \(1 : M \to M\) so there exists \(x^n + p_1 x^{n-1} + \ldots + p_n\) with \(p_i \in I\) and \((1 + p_1 + \ldots + p_n)1m = 0\), so \((1 + p_1 + \ldots + p_n)m = 0\), write this as \(1 - tq(t)\), so there exists \(q(t) \in R[t]\) with \((1 - tq(t))m = 0\) for all \(m \in M\). So \((1 - q(t)\alpha)m = 0\), so \(q(\alpha) \circ \alpha = 1\). Thus \(\alpha\) is injective.

2. A set of \(n\) generators for \(M\) corresponds to a surjection \(\beta : R^n \to M\).

Since \(M\) is free of rank \(n\), there exists \(\gamma : M \to R^n\), then \(\beta \circ \gamma : M \to M\) is surjective, and thus it is an isomorphism. So \(\beta = (\gamma \circ \beta)^{-1}\) is an isomorphism, so that the given generators form a free basis.

To finish we check that rank is well defined. 1) suppose that \(R^m \cong R^n\) for \(m < n\), we extend our generating set of size \(m\) to one of size \(n\) by adding \(n - m\) zeros. Then part 1 says that this is a free basis, but it contains zero, so it is a contradiction.

A second proof is that we let \(P\) be a maximal ideal of \(R\), then \(R/P \otimes_R M \cong (R/P)^m \cong (R/P)^n\).

\[\square\]

Note: This is not true for injections! eg \(\alpha : \mathbb{Z} \to \mathbb{Z}\) by \(\alpha(x) = 2x\).

Integral Dependence
Definition 4.1 (Integral over R). Let S be an R-algebra and let $p(x)$ be a polynomial in $R[x]$. We say that $s \in S$ satisfies p if $p(s) = 0$. The element s is called integral over R if it satisfies some monic polynomial.

The equation $p(s) = 0$ is the equation of integral dependence for s over R. If every element of S is integral over R, we say S is integral over R.

eg $S = \mathbb{Q}(\sqrt{2})$ with $R = \mathbb{Z}$. $\sqrt{2}$ is integral over \mathbb{Z}, as it satisfies $x^2 - 2 = 0$. In fact, $a + b\sqrt{2}$ for any $a, b \in \mathbb{Z}$ is integral over \mathbb{Z}. ($x - a)^2 - 2 = 0$.

Claim: These are all the elements integral over \mathbb{Z}. eg $S = \mathbb{Q}(\sqrt{5})$, then $x = 1 + \sqrt{5}$ is integral over \mathbb{Z}, as it satisfies $(2x - 1)^2 = 5$ which is $4x^2 - 4x - 4 = 0$, so $x^2 - x - 1 = 0$.

Definition 4.2 (Integral Closure). The collection of all elements of S integral over R is called the integral closure, or normalization, of R in S.

Definition 4.3 (Number Field). A finite field extension of \mathbb{Q} is called a number field. The integral closure of \mathbb{Z} in a number field is called the ring of integers in that number field.

Definition 4.4 (Normal). If R is a domain, then it’s normalization is its integral closure in its field of fractions. If R is equal to its normalization, then we say that it is normal.

eg \mathbb{Z} is normal, though proving this really proves the following:

Lemma 4.3. Any UFD is normal.

Proof. Consider r/s with r, s relatively prime. If $(r/s)^n + p_1(r/s)^{n-1} + \ldots + p_n = 0$, then $r^n + p_1sp^{n-1} + \ldots + p_n s^n = 0$, which contradicts the relatively prime assumption. \[]

eg $k[x]$ is normal.

Theorem 4.4. Let R be a ring and let $J \subseteq R[x]$ be an ideal. Let $S = R[x]/J$ and let s be the image of x in s.

1. S is generated by $\leq n$ elements as an R-module iff J contains a monic polynomial of deg $\leq n$. In this case, S is generated by $\{1, s, \ldots, s^{n-1}\}$. In particular, S is a finitely generated R-module iff J contains a monic polynomial.

2. S is a finitely generated free R-module iff J can be generated by a monic polynomial. Then S has a basis of the form $\{1, s, \ldots, s^{n-1}\}$.

eg $\mathbb{Z}[x]/(2x + 1)$ is not finitely generated.

Proof. 1. The powers of x generated $R[x]$ as an R-module, and so generate S as well. So if J contains a monic polynomial, p, of degree n, then for $d \geq n$, we can write s^d in terms of smaller powers of s using $s^{d-n}p(s) = 0$, so $\{1, \ldots, s^{n-1}\}$ generate S. Conversely, suppose that S is generated by
Corollary 4.5. An \(R \)-module \(S \) is finite over \(R \) if \(S \) is a finitely generated \(R \)-module.

2. Suppose that \(J \) is generated by a monic polynomial \(p \) of degree \(n \). Then from \(a, \{1, \ldots, s^{n-1}\} \) generates \(S \). if these do not form a free basis, then there are \(a_i \in R \) with \(\sum a_i s^i = 0 \). Thus, \(\sum a_i x^i \in J \) of degree \(n-1 \). This contradicts the fact that \(J \) is generated by \(p \) which has degree \(n \). Thus, \(S \) is a free \(R \)-module with free basis \(\{1, \ldots, s^{n-1}\} \). Conversely, we suppose that \(S \) is a free \(R \)-module of rank \(n \). Then \(S \) is finitely generated, so by 1, \(J \) contains a monic \(p \) of degree \(n \). Suppose there is \(q \in J \setminus \langle p \rangle \). Use the division algorithm to write \(q = ap + r \) for \(a, r \in R[x] \) with \(\deg r < n \).

Then \(r \in J \), but if \(r \neq 0 \), then this would contradict \(\{1, \ldots, s^{n-1}\} \) being a free basis. So \(r = 0 \) and \(q \in \langle p \rangle \), thus \(\langle p \rangle = J \).

\[\square\]

Definition 4.5 (Finite). An \(R \)-algebra \(S \) is finite over \(R \) if \(S \) is a finitely generated \(R \)-module.

Corollary 4.5. An \(R \)-algebra \(S \) is finite over \(R \) iff \(S \) is generated as an \(R \)-algebra by finitely many integral elements.

Proof. If \(S \) is finite over \(R \) and \(s \in S \), multiplication by \(s \) is an endomorphism of \(S \). So Cayley-Hamilton shows that there exists monic \(p \) with coefficients in \(R \) and \(p(s) = 0 \), so \(s \) is integral over \(R \).

Thus, since \(S \) is a finitely generated \(R \)-algebra, it is generated by finitely many integral elements.

Conversely, suppose that \(S \) is generated by \(t \) integral elements as an \(R \)-algebra.

If \(t = 1 \), then \(S \cong R[x]/J \) for some \(J \), and by the theorem, \(J \) contains a monic polynomial, so \(S \) is finite over \(R \) by the theorem.

We may assume that \(t > 1 \) and that the result is true for \(t = 1 \). Let \(S' \) be the subalgebra of \(S \) generated by the first \(t-1 \) generators of \(S \). Then, by induction, \(S' \) is finite over \(R \), so \(S' \) is generated, as an \(R \)-modules, by \(\{s_1, \ldots, s_{t-1}\} \). The extra generator \(s \) for \(S \) is integral over \(R \), so it is integral over \(S' \), so \(S \) is finite over \(S' \). So \(S \) is generated as an \(S' \)-module by \(t_1, \ldots, t_m \), but then \(\{s_i t_j : 1 \leq i \leq \ell, 1 \leq j \leq m\} \) generates \(S \) as an \(R \)-module. So \(S \) is finite over \(R \).

\[\square\]

Corollary 4.6. If \(S \) is an \(R \)-algebra and \(s \in S \), then \(s \) is integral over \(R \) iff there exists an \(S \)-module \(N \) and a f.g. \(R \)-submodule \(M \subseteq N \) not annihilated by any nonzero element of \(S \) such that \(sM \subseteq M \).

In particular, \(S \) is integral iff \(R[s] \) is a finitely generated \(R \)-module.

Proof. If \(s \) is integral over \(R \), take \(N = S, M = R[s] \subseteq S \) is a finitely generated \(R \)-module and not annihilated by anything in \(S \), since \(s'1 = s' \neq 0 \).

Conversely, if \(\exists M \subseteq N \) with these properties, then multiplication by \(s \) is an \(R \)-module homomorphism. So by Cayley-Hamilton, there exists a monic \(p \) with coefficients in \(R \) such that \(p(s)M = 0 \), then \(p(s) = 0 \) in \(S \), so \(S \) is integral over \(R \).

\[\square\]
Theorem 4.7. Let R be a ring and S be an R-algebra. The set of all elements of S integral over R is a subalgebra of S.

In particular, if S is generated by elements integral over R, then S is integral over R.

Proof. Let S' be the set of elements of S integral over R. We need to show that if $s, s' \in S'$ then ss' and $s + s'$ are in S'. Let $M = R[s], M' = R[s']$, which are finitely generated R-modules. Let $MM' = R\{fg, f \in M, g \in M'\}$, then MM' is a finitely generated R-module. $ss'MM' = (sM)(s'M') \subseteq MM'$, and $(s + s')MM' = (sM)M' + M(s'M')$, so by the corollary, since $MM' \subseteq S$ is a finitely generated submodule not annihilated by any element of S, since $1 \in MM'$, so ss' and $s + s'$ are integral over R. \hfill \Box

Corollary 4.8 (To Cayley-Hamilton). If M is a finitely generated R-module and I is an ideal of R such that $IM = M$ then $\exists r \in I$ such that $(1-\tau)M = 0$.

Proof. By CH, we get $p(x) \in R[x]$ with $x^n + p_1x^{n-1} + \ldots + p_n$ with $p_j \in I^j$ such that $p(\text{id})M = 0$, that is, $(1+p_1+\ldots+p_n)\text{id}M = 0$, so set $r = -(p_1+\ldots+p_n) \in I$. So $(1-\tau)M = 0$. \hfill \Box

Definition 4.6 (Jacobson Radical). The Jacobson radical of R is the intersection of all maximal ideals.

eg, $R = \mathbb{Z}$, then the Jacobson Radical is (0). If R is local, then the Jacobson Radical is the unique maximal ideal.

Corollary 4.9 (Nakayama’s Lemma). Let I be an ideal contained in the Jacobson radical of R and let M be a finitely generated R-module.

1. If $IM = M$ then $M = 0$.

2. If $m_1, \ldots, m_n \in M$ have images in M/IM that generate M/IM as an R-module, then m_1, \ldots, m_n generated M as an R-module.

Proof. 1. By the corollary, $\exists r \in I$ such that $(1-r)M = 0$, since $(1-r)$ is not in any maximal ideal (as r is in all of them), we have $1-r$ is a unit of R, so $M = 0$.

2. Suppose that $\bar{m}_1, \ldots, \bar{m}_n$ generate M/IM. Let $N = M/(\sum Rm_i)$. Then $N/IN = M/(IM + \sum Rm_i) = M/M = 0$, so $IN = N$, so $N = 0$. \hfill \Box

Mostly, we use this in the case (R, P) is local, then M/PM is an R/P-module, and R/P is a field, so it is a vector space.

Application: If (R, P) is local, then $PM = M \Rightarrow M = 0$. ie, if $0 = MP/PM$, then $M = 0$. ie, if $M/PM = R/P \otimes_R M = 0$, then $M = 0$.

Corollary 4.10. If M and N are f.g. R-modules and $M \otimes_R N = 0$ then $\text{Ann}_R M + \text{Ann}_R N = R$, in particular, if R is local, then $M = 0$ or $N = 0$. 21
Proof. We first prove the local case. Suppose $M \otimes_R N = 0$ but $M \neq 0$. Then Nakayama says that $M/PM \neq 0$. Now M/PM is an R/P-vector space, so there exists a surjection $M/PM \rightarrow R/P$ and thus there exists a surjection $M \rightarrow R/P$. So $0 = M \otimes_R N \rightarrow R/P \otimes_R N$ is surjective, since \otimes is right exact, so $R/P \otimes_R N = 0$, so $N/PM = 0$, thus $PN = N$ so $N = 0$.

Now suppose that R is general. $M \otimes_R N = 0$ but $\text{Ann}_R M + \text{Ann}_R N \neq R$. Then there exists prime ideal P with $P \supset \text{Ann}_R M + \text{Ann}_R N$. Then $M_P \otimes_R N_P = 0$, so WLOG, $M_P = 0$, so $M = 0$ since $\text{Ann}_R M \subseteq P$. But then $\text{Ann}_R M = R$, contradiction. \hfill \square

Recall that we shows that integral closure is an R-subalgebra of S. Next: Integral closure commutes with localization.

Proposition 4.11. Let $R \subseteq S$ be rings and let U be a multiplicatively closed subset of R. If S' is the integral closure of R in S, then $S'[U^{-1}]$ is the integral closure of $R[U^{-1}]$ in $S[U^{-1}]$.

Proof. Any element of S integral over R is integral over $R[U^{-1}]$, so S' is integral over $R[U^{-1}]$ and thus, $S'[U^{-1}]$ is integral over $R[U^{-1}]$. So we just need to show that if $s/u \in S[U^{-1}]$ is integral over $R[U^{-1}]$, then there exists $u' \in U$ with $su' \in S'$ (then $s/u = su'/uu' \in S'[U^{-1}]$).

If $(s/u)^n + r_1/su)^n-1 + \ldots + r_n/u^n = 0$, multiply by $(uu_1 \ldots u_n)^n$ to get $(su_1 \ldots u_n)^n + \ldots + r_n(uu_1 \ldots u_n)^n = 0$, so $su_1 \ldots u_n$ is integral over R, and $u_1 \ldots u_n \in U$. \hfill \square

Warning: If R is a Nötherian domain, then the integral closure of R in its quotient field is not necessarily Nötherian.

It is Nötherian if the integral closure is a finitely generated R-algebra (\Rightarrow R-module). Also Nötherian if R is a finitely generated domain containing a field or the integers (Nöther)

e. $R = k[x_1, \ldots, x_n]/I$, the normalization is of the form $k[y_1, \ldots, y_m]/J$.

Next: relationship between the primes in the integral closure of R and the primes in R.

Proposition 4.12 (Lying Over and Going Up). Suppose $R \subseteq S$ is an integral extension of rings, given a prime $P \subseteq R$ then there exists $Q \subseteq S$ prime with $Q \cap R = P$. (Lying Over)

Also, Q may be chosen to contain any ideal $Q_1 \subseteq S$ with $Q_1 \cap R \subseteq P$. (Going Up)

e. $R = \mathbb{Z}$, $S = \mathbb{Z}[\sqrt{2}]$ and $P = (7)$.

Proof. Factor out Q_1 and $R \cap Q_1$, to see that we just need to find a prime Q in S with $R \cap Q = P$. Let $U = R \setminus P$, so $R[U^{-1}] = R_P$. If we show $\exists Q' \subseteq S[U^{-1}]$ with $Q' \cap R_P = P$, then since $Q' = Q[U^{-1}]$ for some prime Q of S, we would have $Q \cap R = P$, so we can assume that R is local with maximal ideal P.

Then, if $PS \neq S$, any maximal ideal Q of S containing PS will have $P \subseteq Q \cap R$, so $P = Q \cap R$. So we just need $PS \neq S$. 22
Proof. If $PS = S$, then $1 = \sum_{i=1}^{t} s_i p_i$, and let S' be the R-algebra generated by \{s_1, \ldots, s_t\}, then $1 \in PS'$ so $PS' = S'$ and S' is a f.g. R-module, since it is a finitely generated R-algebra over R, so by Nakayama, $S' = 0$, which is a contradiction, so $PS \neq S$. \qed

Proposition 4.13. Let $R \subseteq S$ be domains, if $K(S)$ is algebraic over $K(R)$, then every nonzero or S intersects R nontrivially.

If $R \subseteq S$ is an integral extension of domains, then S is a field iff R is a field. Equivalently, if S is an integral R-algebra, P a prime of S, then P is a maximal ideal of S iff $P \cap R$ is a maximal ideal of R.

Proof. For the first statement, if suffices to show it for a principal ideal bS of S. If $b \in S$, then there exist $a_i \in K(R)$ with $\sum_{i=0}^{n} a_i b^i = 0$. Clearing denominators and dividing by a power of b if necessary, we get $\sum_{i=0}^{n} a'_i b^i = 0$ with $a'_0 \neq 0$, $a'_1 \in R$. Then $a'_0 \in bS \cap R$, $a'_0 \neq 0$, so the ideal generated by b intersects R nontrivially.

If $R \subseteq S$ is an integral extension of domains, then $K(S)$ is alg over $K(R)$, if $s/u \in K(S)$, then $\exists a_i \in R$ with $\sum a_i s^i = 0$, so is alg over R (IOU) and $\sum b_j u^j = 0 \Rightarrow \sum_{i=0}^{n} b_j u^{j-m}$.

Suppose R is a field. Let P be a maximal ideal in S. Then $P \cap R \neq \{0\}$, so $P \cap R = R$, this contains 1, so $P = S$.

Suppose instead that S is a field. Let P be a prime of R. Then by Lying Over, there is a prime Q of S with $Q \cap R = P$. But Q must equal (0), so $P = (0) \cap R = (0)$. So the only prime in R is (0), and R is a field.

Finally, take S/P and $R/(P \cap R)$. The statement follows from the field statement once we check that S/P is integral over $R/(P \cap R)$. This is because “integral dependence persists mod P', ie, if $x^n + \sum a_i x^i = 0$, then $x^n + \sum_{i=0}^{n-1} a_i \bar{x}^i = 0$ in S/P, and $a_i = a_i \in R/(P \cap R)$.

Corollary 4.14 (Incompatibility). Suppose $R \subseteq S$ is an integral extension of rings. Two distinct primes of S having the same intersection with R are incomparable, ie, neither is contained in the other.

Without integrality, we have, for example, $k \subseteq k[x, y]$, $(0) = k \cap (x) = k \cap (x, y)$, but $(x) \subseteq (x, y)$.

Proof. If $Q \subseteq Q_1 \subseteq S$ with $Q \cap R = Q_1 \cap R = P \subseteq R$, factor out $P \subseteq R$, and $Q \subseteq S$. Then we get 0 in R/P equals 0 $\subseteq Q_1/Q \subseteq S/Q$. So we are in the case where R' and S' are domains. S' is still integral over R', so $K(S')$ is alg over $K(R')$, so if $Q_1 \neq Q = 0$, $Q_1 \cap R \neq (0)$, contradiction. So $Q_1 = Q = 0$ in S. \qed

5 Blowup Algebra

Geometric Motivation

$\text{Bl}_0 \mathbb{C}^2$ “the blowup of \mathbb{C}^2 at 0”. We want to be able to take a curve and separate out the strands going through the origin, we’ll cut out the origin and
glue in a \(\mathbb{P}^1 \). Algebraically, we replace \(\mathbb{C}[x, y] \) by \(\mathbb{C}[x, y, u, v]/(xv - yu) \), so we replace \(\mathbb{C}^2 \) by \(\mathbb{V}(xv - yu) \subseteq \mathbb{C}^2 \times \mathbb{P}^2 \).

If \((x, y) \neq (0, 0) \), then WLOG, \(x \neq 0 \), so if \(xv - yu = 0 \), then \(v = y/xu \). So if \(y \neq 0 \), \((u : v) = (1 : x/y) = (x : y) \). If \(y = 0 \), then \((u : v) = (1 : 0) = (x : y) \). So if \((x, y) \neq (0, 0) \), there is a unique \((u : v) \) with \((x, y) \times (u : v) \in V(xv - yu) \). If \((x, y) = (0, 0) \), then there are no conditions, so any \((0, 0) \times (u : v) \in V(xv - yu) \).

1c, consider the map \(\pi : \text{Bl} \mathbb{C}^2 \rightarrow \mathbb{C}^2 \) by \((x, y) \times (u : v) \rightarrow (x, y) \), this map is 1-1 away from the origin, and \(\pi^{-1}(0, 0) = \mathbb{P}^1 \), the "exceptional divisor”.

Now \(\mathbb{C}[x, y, u, v]/(xv - yu) \simeq \mathbb{C}[x, y, x, y] \subseteq \mathbb{C}[x, y, t] \), \(\deg t = 1, \deg x = \deg y = 0 \).

Definition 5.1 (Blow-Up Algebras). If \(R \) is a ring and \(I \) is an ideal, then the blow-up algebra of \(I \) in \(R \) is the \(R \)-algebra \(B_1(R) = R \oplus I \oplus I^2 \oplus \ldots \simeq R/I \subseteq R[t] \).

For \(x, y \), \(x \neq 0 \) and \(y = 0 \), then \(B_1(R) \) is a \(\mathbb{Z} \)-graded ring.

The ideal \(I \subseteq B_1(R) \) is homogeneous, thus the quotient \(B_1(R)/I \) is graded.

Definition 5.2 (Associated Graded Ring). \(\text{gr}_I R = R/I[I]/IR[I] \) is the associated graded ring of \(R \).

[Can also do for any diltration \(R \supseteq I_1 \supseteq I_2 \supseteq \ldots \) with \(I_j I_k \subseteq I_{j+k} \).

For \(\mathbb{C}[x, y, u, v]/(xv - yu) \simeq \mathbb{C}[x, y, u, v]/(xv - yu, x, y) \simeq \mathbb{C}[u, v] = \text{gr}_{(x, y)} \mathbb{C}[x, y] \), the coordinate ring of \(\mathbb{P}^1 \). We can also do this for modules:

Definition 5.3. Let \(R \) be a ring, \(M \) an \(R \)-module, and \(I \) an ideal of \(R \), then \(\mathcal{I} : M = M_0 \supseteq M_1 \supseteq M_2 \supseteq \ldots \) is a filtration of \(R \)-modules. It is an \(I \)-filtration if \(IM_i \subseteq M_{i+1} \) for all \(i > 0 \) and it is \(I \)-stable if \(\exists n > 0 \) such that \(\forall i \geq 0, IM_{n+i} = M_{n+i+1} = I^{i+1}M_n \).

OWED RESULT: If \(R \subseteq S \) is an integral extension of domains, then \(K(S) \) is algebraic over \(K(R) \). Suppose \(s_1/s_2 \in K(S) \). Then there exist \(a_i, b_i \) with \(\sum_{i=0}^n a_i s_i^i = 0, a_n = 1 \) and \(\sum_{j=0}^n b_j s_j^n = 0 \). Then \(\sum_{j=0}^n b_j b_j^n = 0 = \sum_{j=0}^n b_j (1/s_2)^{n-j} \), this shows that \(1/s_2 \) is integral over \(K(R) \), so \(s_1/s_2 = s_1 \ast 1/s_2 \) is integral over \(K(R) \).

Definition 5.4. If \(\mathcal{I} \) is an \(I \)-filtration, then \(\text{gr}_I M = M_1/M_1 \oplus M_2/M_2 \oplus \ldots \) and \(\text{Bl}_I M = M \oplus M_1 \oplus \ldots \).

Note: \(\text{gr}_I R \) is an \(R/I \)-algebra. If \(I \) is finitely generated, then \(\text{gr}_I R \) is a finitely generated \(R/I \)-algebra. If \(I \) is a maximal ideal, then \(\text{gr}_I R \) is a finitely generated algebra over a field.

Also \(\text{gr}_I M \) is a graded \(\text{gr}_I R \) module.

Proposition 5.1. Let \(I \) be an ideal in \(R \) and let \(M \) be a finitely generated \(R \)-module. If \(\mathcal{I} : M = M_0 \supseteq M_1 \supseteq \ldots \) is an \(I \)-stable filtration by finitely generated \(R \)-submodules of \(M \), then \(\text{gr}_I M \) is a finitely generated module over \(\text{gr}_I R \).
Proof. Suppose $IM_1 = M_{i+1}$ for $i \geq n$. Then $(I/I^2)(M_i/M_{i+1}) = M_{i+1}/M_{i+2}$ for $i \geq n$. So the union of any set of generators for M_i/M_{i+1} $0 \leq i \leq n$ generates $\text{gr}_I M$ as a $\text{gr}_I R$-module.

Since the M_i are finitely generated R-modules, so are the M_i/M_{i+1}, so we get a finite set of generators.

Proposition 5.2. Let R be a ring, $I \subseteq R$ an ideal, M a finitely generated R-module with I-filtration $\mathcal{F} = M_0 \supseteq M_1 \supseteq \ldots$ by finitely generated M_i.

Then the filtration is I-stable iff the $B_I R$-module $B_I M$ is finitely generated.

Proof. If $B_I M$ is finitely generated, then its generators appear in the first n steps for some n, so $B_I M$ is generated by M_0, \ldots, M_n. So $M_{n+1} \oplus \ldots$ is generated, as a $B_I R$-module, by M_n. This means that $M_{n+1} = I' M_n$ for $i \geq 0$ so \mathcal{F} is I-stable.

Conversely, if \mathcal{F} is I-stable, then $\exists n$ such that $I' M_n = M_{n+1}$ for all $i \geq 0$, so a generating set for M_0, \ldots, M_n generated $B_I M$.

Lemma 5.3 (Artin-Rees). Let R be a Noetherian ring, $I \subseteq R$ an ideal, and let $M' \subseteq M$ be finitely generated R-modules. If $M = M_0 \supseteq M_1 \supseteq \ldots$ is an I-stable filtration, then the induced filtration $M'_0 = M' \supseteq M'_1 = M_1 \cap M' \supseteq \ldots$ is also I-stable, so $\exists n$ such that $M' \cap M_{n+1} = I'(M' \cap M_n)$.

Note: IF R is Noetherian, then so is $B_I R$, since I is finitely generated. So $B_I R$ is a finitely generated R-algebra, so is Noetherian.

Proof. Let $\mathcal{F}' = M' = M'_0 \supseteq M'_1 \supseteq \ldots$ be a $B_I R$ submodule of $B_I M$. If \mathcal{F} is stable, then $B_I M$ is a finitely generated $B_I R$-module, so all submodules are finitely generated and, in particular, $B_I M'$ is finitely generated, so \mathcal{F}' is I-stable.

Q: Can we have $0 \neq I^5 = I^{20}$ in a nice ring? If so, actually have $I^j = I^5$ for all $j \geq 5$. So we'd get $\cap_{j \geq 1} I^j = I^5$.

Corollary 5.4 (Krull Intersection Theorem). Let $I \subseteq R$ be an ideal in a Noetherian ring. If M is a finitely generated R-module, then there is an $r \in I$ such that $(1 - r)(\cap_{j \geq 1} I^j M) = 0$. If R is a domain or a local ring, and I is a proper ideal, then $\cap_{j=1}^{\infty} I^j = 0$.

Proof. For any P, $\cap_{j \geq 1} I^j M = \cap_{j \geq 1} I^j M \cap P M$, now Artin-Rees applied to $\cap P M \subseteq M$ for the I-stable filtration $M_j = P M$ says $3p$ such that $I(\cap_{j \geq 0} I^j M \cap P M) = (\cap_{j \geq 0} I^j M) \cap P^j M = \cap_{j \geq 0} P^j M$. So $3p$ such that $I(\cap_{j \geq 0} I^j M) = \cap_{j \geq 0} (I^j M)$. So $3p$ such that $(1 - r) \cap_{j \geq 0} I^j M = 0$.

6 Flatness

A Flat Family: A "family" of varieties is one that varies with parameters.

Eg: $V(x^2 - a^2)$ for $a \in k$ is $\{a, -a\}$.

Eg: $V(x) \cup V(y - ax) = V(x(y - ax))$, two lines through the origin.
A way to think about $V(x^2 - a^2)$ is as a union of two lines projected down to a line.

A family, then, is a map of varieties $\pi : Y \to X$ with the fibers $\pi^{-1}(x) \subset Y$ for $x \in X$.

Corresponding map of rings $R \to S$ in the other direction. I.e., $k[a] \to k[x,a]/(x^2 - a^2)$. So a family over $\text{Spec}(R)$ is an R-algebra S.

Definition 6.1 (Fiber). The fiber over any prime $P \subset R$ is $K(R/P) \otimes_R S$

Corresponding Example:
- $(a-7) \subseteq k[a]$ has fiber $k[a]/(a-7) \otimes_{k[a]} k[a, x]/(x^2 - a^2) \simeq k[a, x]/(x^2 - a^2, a-7) \simeq k[x]/(x^2 - 49)$ is the ring of $\{7, -7\}$.
- $\mathbb{Z}/2\mathbb{Z}$ is a \mathbb{Z}-algebra, so $\text{Spec}(\mathbb{Z}_2) \to \text{Spec}(\mathbb{Z})$ is a family. The fiber over 7 is $\mathbb{Z}_7 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \simeq 0$. So the fiber over (2) is $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2$ and is trivial elsewhere. We replace locally trivial is flat. A family is nice if it is flat, that is, S is a flat R-module.

Recall that if $0 \to A \to B \to C \to 0$ is a ses of R-mods, then $A \otimes M \to B \otimes M \to C \otimes M$ to exact for any R-module M. If $0 \to A \otimes M \to B \otimes M$ is exact, then M is called a flat R-module.

Definition 6.1
- $R = k[x]$ and $S = k[x, y]/(x - y)$. Check: S is flat (since $S \simeq k[x] = R$ as an R-module).
- Free R-modules are always flat.
- $S = k[x, t]/(tx - 1)$, $R = k[t]$. Then $S \simeq k[t, t^{-1}]$, and $R[U^{-1}]$ is flat for all multiplicative sets $U \subset R$.
- $S = k[a, b], S = R[a, b, x, y]/(ax + by)$, then S is an R-module but is not flat.

Important Example: "Gröbner Degeneration". If $S = k[x_1, \ldots, x_n]$, and $I \subset S$ is an ideal. Let $w = \mathbb{R}^n$ and consider \leq_w where $x^u < x^v$ if $w \cdot u < w \cdot v$ or (other condition)

Gröbner theory studies the ideal $\langle w \rangle (I)$. So we define, given $f \in S$, $f = \sum c_v x^v$, set $\bar{f} = f(x_i/t^v, \ldots, x_n/t^{w_n}) t^{b} \in S[t]$ where $b = \max c_v \neq 0 w \cdot u$. ie, $f = \sum c_v x^v t^{w - u} u$.

If $S = k[x, y], w = (2,3)$ and $f = x^2 + y^3$, then $\bar{f} = x^3 + 3xy$ then $\bar{F} = x^3 + 3xyt$.

Define $I_t \subset S[t]$ to be $I_t = \langle \bar{f} \rangle f \in I \rangle$, then $I_t |_{t=1} = I$ and $I_t |_{t=0} = \langle w \rangle (I)$. So $S[t]/I_t$ is a $k[t]$-module defining a family. Check that, for all $\alpha \neq 0$, the fiber over $t = \alpha$ is isomorphic to S/I.

Lemma 6.1. $S[t]/I_t$ is a free, and thus flat, $k[t]$-module.

Recall: $B = \{ x^u | x^u \notin \langle w \rangle (I) \}$ is a basis for S/I as a k-vector space.

Proof. We claim that B is a $k[t]$ basis for $S[t]/I_t$. That is, $S[t]/I_t \simeq \oplus k[t]x^u$ over $x^u \in B$.

The key point is that if $G = \{ g_1, \ldots, g_r \}$ is a Gröbner basis for I, then $\{ \bar{g}_i, \ldots, \bar{g}_r \}$ generate I_t and $\bar{g}_i = w (g_i) + t$(other stuff). Given $f \in S[t]$, dividing by $\{ \bar{g}_i \}$ gives a polynomial $\sum p_a(t)x^u$.

"linear independence" as before. If $f = \sum p_a(t)x^u = 0$ in $S[t]/I_t$, then $f = t^k(\sum p_a(t)x^u)$ are not all divisible by G so equals $\sum q(x, t)\bar{g}_i$. □
Let Definition 6.2.

Definition 6.3. Given a projective resolution using Gröbner Bases by Schreyer’s Algorithm.

We say this gives a Gröbner Degeneration from $V(I)$ to $V(\langle I \rangle)$.

Check: $S[t]/I \otimes_{k[t]} S[t]/(t) \simeq S/\epsilon_w(I)$ and $S[t]/I_1 \otimes_{k[t]} S[t]/(t-a) \simeq S/I_1$.

eg: $I = (xy - y^2) \subseteq k[x,y]$, $w = (2,1)$, so $I_1 = (xy - t^2y^2)$, we get the union of the x axis and a line of slope $1/t^2$, and $\epsilon_w(I) = (xy)$.

eg: $I = (x^2 + y^2 - 4) \subseteq \mathbb{C}[x,y]$, then $I_t = (x^2 + t^2y^2 - 4t^2) \subseteq \mathbb{C}[x,y,t]$, $\epsilon_{\leq}(T) = (x^2)$.

Let $R = k[a,b]$ and $S = k[a,b,x,y]/(ax + by)$, and S is not flat. Look at $(a,b) \otimes S \to R \otimes S$.

Tor

Flatness says that $0 \to A \to B \to C \to 0$ exact implies $0 \to A \otimes M \to B \otimes M \to C \otimes M \to 0$, but we get all but the first anyway.

If M is not flat, we would like to define $\text{Tor}_1(M,C) \to \text{ker}(A \otimes M \to B \otimes M)$.

‘General Homological Algebra’

If F is a right exact functor from R-modules to R-modules, then given $0 \to A \to B \to C \to 0$ we get $\ldots \to L_1FB \to L_1FC \to FA \to FB \to FC \to 0$.

Definition 6.2. Let $P: \ldots \to P_2 \to P_1 \to P_0 \to M \to 0$ be a projective resolution of an R-module M (ie P is exact with each P_i projective).

If $R = k[x_1, \ldots, x_n]$ and $M = R/I$ ten we can construct a free resolution using Gröbner Bases by Schreyer’s Algorithm.

Definition 6.3. Given a projective resolution P, define FP to be $\ldots \to FP_2 \to FP_1 \to FP_0 \to FM \to 0$. This is still a chain complex, so we take homology, and $LF_i = \text{ker}(F \varphi_i)/\text{Im} F \varphi_{i+1}$.

For us: $\text{Tor}_i(M,N) = LF_i(N)$ where F is $- \otimes_R M$. So to compute $\text{Tor}_i(M,N)$, we compute a projective resolution of N, tensor with M, and take the i^{th} homology.

Basic Facts:

1. It doesn’t matter what resolution we take.
2. $\text{Tor}_i(M,N) = \text{Tor}_i(N,M)$.
3. $\text{Tor}_0(M,N) = M \otimes_R N$.
4. If M is projective, then $\text{Tor}_i(M,N) = 0$ for all $i > 1$.

Examples: If $x \in R$ is a nonzero divisor then $0 \to R \xrightarrow{x} R \to R/(x) \to 0$. Claim: This is a free resolution of $R/(x)$. Thus $\text{Tor}_i(R/(x),M) = R/(x) \otimes_R M = M/xM$ if $i = 0$, is $\text{ker}(M \xrightarrow{\cdot x} M) = \{0 : m \} = \{ m \in M : xm = 0 \}$ if $i = 1$ and 0 else.

eg. $R = k[x,y]$ and $M = N = k[x,y]/(x,y) \simeq k$. What is $\text{Tor}_R^2(k,k)$. Then $0 \leftarrow M \leftarrow R \xleftarrow{(y,z)} R^2 \xleftarrow{(y,-z)} R \leftarrow 0$ is a free resolution.
So then $\text{Tor}_i(k, k) = k$ if $i = 0$, k^2 if $i = 1$ and k if $i = 2$, 0 else. In general, if $R = k[x_1, \ldots, x_n]$ and $M = R/(x_1, \ldots, x_n)$, then $\text{Tor}_i(M, N) = k^{\beta_i}$ for some β_i, and we call the β_i the Betti numbers.

A long exact sequence: If $0 \to A \to B \to C \to 0$ then we get $\text{Tor}_i(A, M) \to \text{Tor}_i(B, M) \to \text{Tor}_i(C, M) \to \text{Tor}_{i-1}(A, M) \to \cdots \to \text{Tor}_1(C, M) \to A \otimes M \to B \otimes M \to C \otimes M \to 0$.

More facts about Tor: If S is a flat R-algebra, then $S \otimes_R \text{Tor}^R_i(M, N) = \text{Tor}^S_i(S \otimes_R M, S \otimes_R N)$.

If we have a short exact sequence $0 \to A \to B \to C \to 0$ we get a long exact sequence $\to \text{Tor}^R_i(A, M) \to \text{Tor}^R_i(B, M) \to \text{Tor}^R_i(C, M) \to \text{Tor}^R_{i-1}(A, M) \to \cdots \to \text{Tor}_1(B, M) \to \text{Tor}_1(C, M) \to A \otimes M \to B \otimes M \to C \otimes M \to 0$.

Proposition 6.2. Let R be a ring and M an R-module. If I is an ideal of R then the multiplicative map $I \otimes_R M \to M$ is an injection iff $\text{Tor}^R_i(R/I, M) = 0$.

The module M is flat iff this condition is satisfied for all finitely generated I.

Proof. Consider the ses $0 \to I \to R \to R/I \to 0$. From this we get a long exact sequence $\text{Tor}_1(R, M) \to \text{Tor}(R/I, M) \to I \otimes M \to R \otimes M = M$.

As $\text{Tor}_1(R, M) = 0$, $I \otimes M \to M$ is injective iff $\text{Tor}_1(R/I, M) = \ker(I \otimes M \to M)$ is zero.

Recall that M is flat iff $M \otimes N' \to M \otimes N$ is an inclusion for all inclusions $N' \subseteq N$.

First we assume this for all N' finitely generated I and $N = R$. We must show that this implies the general condition for $N' \subseteq N$. First, let I be a general ideal of R and $x \in I \otimes M$. Then $x = \sum_{i=1}^s r_i \otimes m_i$. Let I' be the ideal generated by $< r_1, \ldots, r_s >$. Then $x \in I' \otimes M \to M$ is an inclusion, so $x \neq 0$ in M.

Now consider $N' \subseteq N$. By the same argument we may assume that N is finitely generated. I.e., $x \in N' \otimes M$, then $x = \sum n_i \otimes m_i$, let N' be the submodule generated by the n_i and any necessary relations. We can thus assume that N is finitely generated. So we can find a filtration $N' = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_r = N$ with each N_i/N_{i-1} cyclic.

It suffices to show that $N_i \otimes M \subseteq N_{i+1} \otimes M$ is an inclusion, so we may assume that $N/N' \simeq Rx \simeq R/I$. Now from $0 \to N' \to N \to N/N' \to 0$ we get $\text{Tor}_1(N/N', M) \to N' \otimes M \to N \otimes M$. $\text{Tor}_1(N/N', M) = \text{Tor}_1(R/I, M) = 0$ by hypothesis. So $N' \otimes M \to N \otimes M$ is an inclusion for arbitrary $N' \subseteq N$, so M is flat.

The point was that $I \otimes M \to M$ being an inclusion for all finitely generated I implies that $N' \otimes M \to N \otimes M$ is an inclusion for all $N' \subseteq N$.

So to check flatness, it is enough to check finitely generated ideals.

Corollary 6.3. Let k be a field and $R = k[t]/t^2$, and M an R-module. Then M is flat iff multiplication by t from M to tM induces an isomorphism $M/tM \to tM$.

Proof. The only nonzero ideal in R is (t). So M is flat iff $(t) \otimes M \to M$ is an injection. As $(t) \simeq R/(t)$ as an R-module by $t \mapsto 1$, we have $(t) \otimes M \simeq$
for all finitely generated $I_0 \otimes R/tM$, so the map $M/tM \to tM$ by $m \mapsto tm$ is the composition $R/t \otimes M \to t \otimes M \to M$. So it is injective.

Corollary 6.4. If $a \in R$ is a nzd in R and M is a flat R-module, then a is a nzd on M.

If R is a PID, then the converse is true: M is flat iff M is torsion free.

Proof. Let $a \in R$ be a nzd and M flat. $I = Ra \simeq R$ by $1 \mapsto a$. So we have $R \otimes M \to I \otimes M \to R \otimes M$ by $1 \otimes m \mapsto a \otimes m \mapsto a \otimes m$, so $m \mapsto am$. Since the map $m \mapsto am$ is injective, a is a nzd on M.

Suppose that R is a PID and M is torsion free, so no element of R annihilates an element of M. Then for any $a \neq 0$ in R, $Ra \otimes M \to M$ is an injection, since $0 \otimes M \to M$ is an injection as well, this means that $I \otimes M \to M$ is an inclusion for all finitely generated I, thus M is flat.

Definition 6.4 (Rees Algebra). The Rees Algebra of R with respect to I, $\mathcal{R}[R, I] = R[t, t^{-1}]I \subseteq R[t, t^{-1}]$. It is $\sum_{n=-\infty}^n I^n t^{-n}$ with $I^n = R$ for $n \leq 0$.

If R is a k-algebra (k a field) we’ll see that $\mathcal{R}[R, I]$ is a flat $k[t]$-algebra.

Facts: $\mathcal{R}[R, I]/\mathcal{R}[R, I] = gr_I R = R/I \oplus I/I^2 \oplus I^2/I^3 \oplus \ldots$.

If $a \neq 0$ in R, then $\mathcal{R}[R, I]/(t - a) \mathcal{R}[R, I] \simeq R$.

So $\mathcal{R}[R, I]$ is a family over $[t]$ with fiber over $t = 0$ $gr_I R$ and fiber over everything else R.

Lemma 6.5. If R is a k-algebra, then $S = \mathcal{R}[R, I]$ is flat over $k[t]$.

If $\cap_{i=1}^{n} I^d = 0$ then every element of the form $1 - ts$ with $s \in S$ is a nzd on $\mathcal{R}[R, I]$.

Proof. Since $k[t]$ is a PID, it suffices to observe that S is torsion free as $k[t]$-module. This is immediate from the fact that $S = R[t, t^{-1}] \subseteq R[t, t^{-1}]$.

For the second statement, suppose first that $p(1 - ts) = 0 \in S$. This means that $p \in (t)$, $p = qt$. t is a nzd on S, so $q(1 - ts) = 0$ in S, so $q \in t$, so $p \in t^2$. Continue to get that $p \in t^n S$ for all n.

Now $p = \sum_{i=-j} p_i t^i$. Since $p \in t^n S$ for all n, we must have $p_i \in I^m$ for all m.

What to take away: Flatness is a niceness property, and flat families preserve a lot of properties (ie, dimension)

7 Completions

The basic idea is that the open sets in the Zariski topology are too big, so we look for smaller neighborhoods.

If $R = k[x_1, \ldots, x_n]$ and $m = (x_1, \ldots, x_n)$, then $R_m = \{f/g : g(0) \neq 0\}$.

We replace this by $\hat{R} = k[[x_1, \ldots, x_n]]$ formal power series, and we get a natural map $R_m \to \hat{R}$.

One advantage is that we get a version of the inverse function theorem.
Definition 7.1 (Inverse Limit). If \(\{G_i \}_{i \in \mathbb{N}} \) is a sequence of abelian groups with homomorphisms \(\varphi_i : G_i \to G_{i-1} \). Then \(\text{lim} \lim_{\leftarrow} G_i = \{ g \in \prod_{i=1}^{\infty} G_i | \varphi_i(g_i) = g_{i-1} \} \) is the inverse limit, which is an abelian group under coordinatewise addition.

We will be interested in the case where we start with a ring \(R \) and a filtration \(\mathfrak{m}_1 \supset \ldots \mathfrak{m}_n \subset \ldots \) of ideals and set \(G_i = R/\mathfrak{m}_i \). Write \(\hat{R} = \text{lim} \lim_{\leftarrow} R/\mathfrak{m}_i \).

\(\hat{R} \) is a ring by coordinate multiplication. Most important case is \(\mathfrak{m}_i = \mathfrak{m}^i \) for some ideal \(\mathfrak{m} \subset R \). Notation is \(\hat{R}_m \). e.g. \(R = k[x] \), \(\mathfrak{m} = (x) \), then \(\hat{R}_m = \lim_{\leftarrow} k[x]/x^i \).

Claim: \(\hat{R}_m = k[[x]] \).

Proof. \(\varphi : k[[x]] \to \hat{R}_m \), \(a \to (b_1, b_2, \ldots) \) by \(\sum a_i x^i \mapsto b_i = \sum_{n=0}^{i-1} a_n x^n \).

This is a well-defined homomorphism, so we just need to check that it is an iso. For the inverse map, given \(b = (b_1, \ldots) \in \hat{R}_m \), each \(b_i \) has a representation of the form \(\sum_{j=0}^{k} a_{ij} x^j \) and if \(k < \ell \) then \(a_{k,j} = a_{\ell,j} \) for \(j < k \). Define \(\psi : \hat{R}_m \to k[[x]] \) by \(b \mapsto \sum_{j=0}^{i} a_{ij} x^j \).

\(\square \)

Definition 7.2 (Complete with respect to \(\mathfrak{m} \)). There is a natural map, \(R \to \hat{R}_m \) by \(r \mapsto (r, r, r, \ldots) \), if this is an isomorphism, then \(R \) is complete.

Theorem 7.1 (Cohen Structure Theorem). If \(R \) is a complete local ring containing a field, then \(R = k[[x_1, \ldots, x_n]]/I \) for some \(I \).

e.g., the \(p \)-adics, \(p \in \mathbb{Z} \), then \(\hat{\mathbb{Z}}_p = \lim_{\leftarrow} \mathbb{Z}/p^n \), with \(\varphi : \mathbb{Z}/p^n \to \mathbb{Z}/p^{n-1} \) by \(a \mapsto a \).

Then we can write elements of \(\hat{\mathbb{Z}}_p \) as \(\sum_{i=0}^{\infty} a_ip^i \) for \(0 \leq a_i < p \) with addition is "add with carrying"

In \(\hat{\mathbb{Z}}_2 \), \(1 + 2 + 4 + 8 + 16 + \ldots \) is \(b = (1, 3, 7, \ldots) = (-1, -1, -1, \ldots) \), and \(1 = (1, 1, 1, \ldots) \).

If we have \(\mathfrak{m}_1 \supset \mathfrak{m}_2 \supset \ldots \) we get an ideal \(\hat{\mathfrak{m}}_1 = \{ g = (g_1, \ldots)|g_j = 0 \forall j < i \} \subseteq R \). When \(\mathfrak{m}_i = \mathfrak{m}^i \), then \(\hat{\mathfrak{m}}_i = \hat{\mathfrak{m}} \).

Lemma 7.2. When \(\mathfrak{m} \) is a maximal ideal in \(R \), then \(\hat{R}_\mathfrak{m} \) is a local ring. For any filtration, we have \(\hat{R}/\hat{\mathfrak{m}} = R/\mathfrak{m} \).

Proof. If \(g \in \hat{R}/\hat{\mathfrak{m}} \), then map \(g + \hat{\mathfrak{m}} \mapsto g_i + \mathfrak{m} \) is the "projection homomorphism"

If \(\varphi(g+\hat{\mathfrak{m}}) = 0 \) then \(g_i \in \mathfrak{m}_i \), so \(g_j \in \mathfrak{m}_j \) for \(j < i \). So \(g = (0, 0, 0, \ldots, 0, \ldots) + \hat{\mathfrak{m}} \), so \(g \in \hat{\mathfrak{m}} \), so \(g = 0 \).

It is surjective, since \(R \to \hat{R} \to R/\mathfrak{m} \) by \(r \mapsto (r, r, r, \ldots) \to r + \mathfrak{m} \).

Thus \(\hat{R}/\hat{\mathfrak{m}} \cong R/\mathfrak{m} \). If \(\mathfrak{m} \) is a maximal ideal in \(R \), then \(R/\mathfrak{m} \) is maximal. Thus, \(\hat{R}/\hat{\mathfrak{m}} \) is a field, and so \(\hat{\mathfrak{m}} \) is a maximal ideal of \(\hat{R} \). We now show that if \(g \in \hat{R} \setminus \hat{\mathfrak{m}} \), then \(g \) is a unit.

Note that each \(R/\mathfrak{m}^i \) is a local ring with maximal ideal \(\mathfrak{m} \). So if \(g_i \in R/\mathfrak{m}^i \setminus \mathfrak{m} \), then \(g_i \) is a unit in \(R/\mathfrak{m}^i \). If \(g = (g_1, g_2, \ldots) \in \hat{R}_m \setminus \hat{\mathfrak{m}} \), then \(g_1 \neq 0 \), so each \(g_i \notin \mathfrak{m}R/\mathfrak{m}^i \).
Since \(g_i = g_j \mod m \), then \(g_i^{-1} = g_j^{-1} \mod m \), so set \(g^{-1} = (g_1^{-1}, \ldots) \), and note that \(gg^{-1} = (1, 1, \ldots) \).

Def. 7.3 (Convergence). A sequence \(a_1, a_2, \ldots \in \hat{R} \) converges to an element \(a \in \hat{R} \) if \(\forall n \exists \hat{i}_n \) such that \(a - a_j \in \hat{m}_n \) for \(j \geq i_n \), i.e., \(a_{i_n} = (a_1, a_2, \ldots, a_n, \text{other}) \).

A sequence is Cauchy if \(\forall n \exists \hat{i}_n \) such that \(a_i - a_j \in \hat{m}_n \) for \(i, j \geq i_n \).

A sequence converges iff it is Cauchy.

This is the usual notion of convergence in the \(m \)-adic topology which has a base of open sets \(\{a + \hat{m}_i | a \in \hat{R}, i \geq 1\} \).

Cauchy implies Convergence: we set \(a = \lim a_i \), i.e., if \(\{a_i\} \) is Cauchy, \(a = (a_1, a_2, \ldots) \), set \(a = (b_1, b_2, \ldots) \) with \(b_n = a_{jn} \) for any \(j > i_n \).

This is well defined, since if \(j, k \geq i_n \), \(a_j - a_k \in \hat{m}_n \) so \(a_{jn} = a_{kn} \). Check \(a \in \hat{R} \). If \(j > i_n \), then \(b_n = a_{jn} \) and \(b_{n-1} = a_{jn-1} \) so \(b_n = b_{n-1} \mod \hat{m}_n \).

Check: \(\{a_i\} \) converges to \(a \). Given \(n \), \(\exists i_n \) such that \(\forall i, j \geq i_n \), \(a_i - a_j \in \hat{m}_n \).

By construction, for such an \(i, a_i - a \in \hat{m}_n \), so \(\forall i \geq i_n, a_i - a \in \hat{m}_n \), so \(\{a_i\} \to a \).

From analysis: we know that if \(a_i \to a \) and \(b_i \to b \), then \(a_i + b_i \to a + b \) and \(a_ib_i \to ab \).

Application:

Proposition 7.3. If \(R \) is complete with respect to \(m \), then \(U = \{1 - a | a \in m\} \) are units in \(R \).

Proof. If \(a \in m \), set \(a_i = \sum_{j=0}^{i} a^j = 1 + a + a^2 + \ldots \). Then the sequence \(\{a_i\} \) is Cauchy. If \(i, j > n - 1 \), then \(a_i - a_j \in m^n \). So it converges to some \(b \in \hat{R} \). And \((1 - a)a_i \) converges to \((1 - a)b \).

But \((1 - a)a_i = 1 - a^{i+1} \), so it converges to 1.

We saw this with \(a = 2 \) in \(\hat{Z}_2 \), there \(1 + 2 + 4 + 8 + \ldots \), so the limit of the Cauchy sequence \(\sum_{j=0}^{i} 2^i \) is \(-1\).

Corollary 7.4. \(R \) is a local ring with maximal ideal \(P \), then \(R[[x_1, \ldots, x_n]] \) is local with maximal ideal \(P + (x_1, \ldots, x_n) \).

Proof. \(R[[x_1, \ldots, x_n]] = R[x_1, \ldots, x_n][x_1, \ldots, x_n] \). If \(f \in P + (x_1, \ldots, x_n) \), then \(f \) has constant term \(f_0 \notin P \), so \(f_0 \) is a unit in \(R \). So \(f_0^{-1}f = 1 + g \) for \(g \in (x_1, \ldots, x_n) \).

So \(1 + g \) is a unit, thus \(f \) is a unit as well.

Def. 7.4. Let \(m_0 \supset m_1 \supset \ldots \) be a filtration of ideals, and let \(\text{gr} R \) be the associated graded ring.

Given \(f \in R \) let \(m = \max\{j | f \in m_j\} \). Define \(\text{in}(f) = f + m_{m+1} \in m_j/m_{j+1} \in \text{gr} R \).
Proposition 7.5. Suppose that R is a ring complete with respect to $m_1 ⊃ m_2 ⊃ ...$. Suppose $I ⊂ R$ is an ideal, $a_1, ..., a_s ∈ I$. If $\text{in}(a_1), ..., \text{in}(a_s)$ generate $\text{in}(I) = (\text{in}(f) | f ∈ I) ⊂ \text{gr} R$. Then \{a_1, ..., a_s\} generate I.

Proof. Let $I' = (a_1, ..., a_s)$. We may assume that none of the a_i are 0. Choose $d >> 0$ so that $a_i ∉ m_d$ for all i.

Given $f ∈ I$ with $\text{in}(f)$ of degree e, we can write $\text{in}(f) = \sum_{j=1}^{s} G_j \text{in}(a_j)$ with $G_j ∈ \text{gr}_m R$ homogeneous of degree $\text{deg}(\text{in}(f)) − \text{deg}(\text{in}(a_j))$. Take $g_1, ..., g_s$ with $\text{in}(g_j) = G_j$. Then $f = −\sum_{j=1}^{s} g_j a_j ∈ m_{e+1}$.

Repeat: we can get $f' ∈ I'$ with $f − f' ∈ m_{d+1}$. Now keep repeating, noting that now $\text{deg}(G_j) ≥ e − d > 0$.

$g_j ∈ m_{e-d}$, so get $f = −\sum_{j} g_j^{(0)} a_j − \sum_{j} g_j^{(1)} a_j − ... − \sum_{j} g_j^{(n)} a_j$ with $g_j^{(i)} ∈ m_{e-d+i}$.

$f^n ∈ m_{e+n+1}$, so the series $\sum_{i=0}^{∞} g_j^{(i)}$ converges, and we will call the limit h_j. Now look at $f − \sum h_j a_j$. This is 0, since $∩ m_i = 0$, and so $f ∈ I'$, thus the a_i generate I. \□

Theorem 7.6. Let R be a Nötherian ring and let m be an ideal of R.

1. \hat{R}_m is Nötherian.

2. $\hat{m}_n = m^n \hat{R}_m$, so $\text{gr}_{\hat{m}} \hat{R} = \text{gr}_m R$.

Proof. Write $\text{gr} \hat{R}$ for the associated graded ring of R with respect to \hat{m}. Then since $\hat{R}/\hat{m} ∼= R/m$, we have $\text{gr} \hat{R} = \text{gr}_m R$. Since R is Nötherian, so is R/m.

The ring $\text{gr}_m R$ is finitely generated as an R/m algebra (since m is a finitely generated ideal). So $\text{gr}_m R ∼= R/m[x_1, ..., x_n]/J$ for some ideal ℓ, J, thus $\text{gr}_m R$ is Nötherian by the Hilbert Basis Theorem.

So $\text{gr} \hat{R}$ is Nötherian. So for any ideal $I ⊂ \hat{R}$, the ideal $\text{in}(I) ⊂ \text{gr} \hat{R}$ is finitely generated by the initial forms of $a_1, ..., a_s$, so $a_1, ..., a_s$ generate I, and so \hat{R} is Nötherian.

To show that $\hat{m}_n = m^n \hat{R}_m$ it suffices to show that both have the same initial ideals in $\text{gr} \hat{R}$. (This uses Nötherian, as we need ideals in $\text{gr} \hat{R}$ to be finitely generated to apply the prop). But both initial ideals consist of all terms of degree $≥ n$. \□

Theorem 7.7. Let R be a Nötherian ring. Let I is an ideal of R.

1. If M is a finitely generate R-module, then the natural map $\hat{R} ⊗_R M → \lim_{← i} M/I^i M = M$ is an isomorphism.

2. \hat{R} is a flat R-module.

Lemma 7.8 (Hensel’s Lemma). Let R be a ring that is complete with respect to an ideal m. Let $f(x) ∈ R[x]$. If a is an approximate root of f in the sense that $f(a) ≡ 0 \mod f'(a)^2 m$ then there is a root b of f near a in the sense that $f(b) = 0$ and $b ≡ a \mod f'(a)m$.

If $f'(a)$ is a nonzerodivisor on R, then b is unique.
Most often used when \(f'(a) \) is a unit.

Application

Is 8 a square in \(\hat{\mathbb{Z}}_7 \)?

Take \(c \in \mathbb{Z}_p \). Write \(c = p^n b \) where \(p \not| b \). (ie \(b = \sum_{i=0}^{\infty} b_i p^i \), \(b_0 \neq 0 \)). Then \(c \) is a square iff \(n \) is even and \(b \) is a square. So we'll assume \(c = \sum_{i=0}^{\infty} c_i p^i \) has \(c_0 \neq 0 \).

If \(c = d^2 \), \(d = \sum_{i=0}^{\infty} d_i p^i \), then \(c_0 = d_0^2 \) mod \(p \).

Consider \(f(x) = x^2 - c \). (assume \(p > 2 \)). Then \(f(d_0) = d_0^2 - c \in (p) \).

\(f'(x) = 2x \), so \(f'(d_0) = 2d_0 \neq 0 \), so is a unit in \(\hat{\mathbb{Z}}_p \). So Hensel's lemma says that there is a root of \(f \), so \(c \) is a square.

So as \(8 = 1 + 7 \), and 1 is a square mod 7, 8 must be square.

Idea: use Newton's method to construct \(a_1, a_2, a_3, \ldots \) by \(a_{i+1} = a_i - f(a_i)/f'(a_i) \).

Claim: This is a convergent sequence with limit \(c \) and \(f(c) = 0 \). Recall Taylor's Theorem that \(f(x + y) = f(x) + f'(x)y + \frac{1}{2} f''(x) y^2 \) for some polynomial \(h(y) \in R[x][y] \).

Fact 1: If \(f'(a_i) \) is a unit, so is \(f'(a_i) \) for all \(i \) (assume that \(f(a_i) \in m \)).

\[b_i = f'(a_{i+1}) - a_i = -f(a_i)/f'(a_i) = f'(a_i) + f''(a_i)b_i + h_{a_i} b_i^2 \]

is a unit plus something in \(m \). As such, \(f(a_i + 1) \) is a unit.

Fact 2: If \(f(a_1) \in m, f(a_{i+1}) \in m^{2i} \). \(f(a_{i+1}) = f(a_i + b_i) = f(a_i) + f'(a_i)b_i + h_{a_i} b_i^2 = b_i + h_{a_i} b_i^2 \in m^{2i} \).

\(f(a_{i+1}) \in m^{2i} \) implies that \(b_{i+1} \in m^{2i} \), so \(a_{i+1} - a_i \in m^{2i} \), so \(\{a_i\} \) is Cauchy.

Let \(b \) be the limit. Argue that \(f(b) = 0 \).

Question: What about better approximation? ie, can we replace \(m \) by \(m^2, \ldots, m^n \)?

Yes, and the same proof/statement works, because if \(R \) is complete wrt \(m \), it is complete wrt \(m^n \).

Proposition 7.9 (Universal Property of Inverse Limit). If \(\{G_i\} \) is a set of abelian groups with \(\varphi_i : G_i \to G_{i-1} \) and \(H \) is an abelian group with \(\psi_i : H \to G_i \) such that \(\varphi_i \psi_i = \psi_{i-1} \), then there exists a unique map \(\psi : H \to \lim_{\to i} G_i \) such that everything commutes.

Note: If \(R \) is a ring and \(S \) is an \(R \)-algebra that is complete with respect to \(n \) and \(f_1, \ldots, f_n \in S \), then \(\exists ! R \)-algebra homomorphism \(\varphi : R[[x_1, \ldots, x_n]] \to S \) sending \(x_i \) to \(f_i \) for each \(i \). Theorem 7.16.

8 Dimension

Definition 8.1 (Krull Dimension). The Krull dimension is the supremum of the lengths of ascending chains of distinct prime ideals.

The motivation is: The dimension of a vector space is the length of the longest (or any maximal) chain of subspaces.

eg. Let \(k \) be a field. Then \(\dim k = 0 \).

\(\dim k[x] = 1 \), as \(0 \subseteq (x) \) and if \(0 \subseteq (p) \subseteq (q) \) then \((q) = (p) \).

This actually proves the following:
Lemma 8.1. If R is a PID, then $\dim R = 1$.

In affine algebraic geometry, the dimension of a variety $V(I) \subseteq \mathbb{A}^n$ is the length of the longest chain of subvarieties $V(I) = V_r \supseteq V_{r-1} \supseteq \ldots \supseteq V_0$, which is $\dim k[x_1, \ldots, x_n]/I$.

For rings of the form $R = k[x_1, \ldots, x_n]/I$ every maximal chain of primes has the same length (a ring with this property is called Catenary)

Properties of Dimension

1. $\dim R = \sup_P \dim R_P$ over all P prime in R.

2. Nilpotents don’t affect dimension. ie, if I is a nilpotent ideal of R (so $I^k = 0$ for some k), then $\dim R = \dim R/I$.

3. Dimension is preserved by maps with finite fibers. If $R \subseteq S$ are rings such that S if a finitely generated R-module, then $\dim R = \dim S$.

4. Calibration: if k is a field, then $\dim k[x_1, \ldots, x_n] = n$.

5. If R is an affine domain over a field $R \cong k[x_1, \ldots, x_n]/I$ for I prime, then $\dim R = \text{trdeg}_k R$.

6. If R is Noetherian local with maximal ideal \mathfrak{m}, then $\dim R$ is the minimum n such that $\exists n$ elements $f_1, \ldots, f_n \in \mathfrak{m}$ not in any prime other than \mathfrak{m}.

7. If R is an \mathbb{N}-graded ring $R_0 = k$ generated in degree 1, then there exists a polynomial P such that $P(n) = \dim_k R_n$ for $n >> 0$. Then $\dim R = 1 + \deg P$. This polynomial is called the Hilbert Polynomial.

eg, $R = k[x]$, $\deg(x) = 1$, then $P(n) = 1$ for all n, so $\dim R = 1$. This gives an algorithm to compute dimension for $R = k[x_1, \ldots, x_n]/I$.

Fact: Flat implies that the fibers have the same hilbert polynomial

By convention: if $I \subseteq R$ is an ideal, the dimension of I is the dimension of the ring R/I.

If M is an R-module, then the dimension of M is the dimension of Ann M (which is dim $R/\text{Ann} M$). Think about this in the same way as we do primary decomposition, so we just ignore the dimension of I as an R-module.

If I is prime, then the codimension of I is the dimension of R/I, that is, the length of the longest chain of primes contained in I. As $\dim I = \dim R/I$ and $\text{codim} I = \dim R/I$, $\dim R \geq \dim I + \text{codim} I$.

For general I, $\text{codim} I = \min \text{of codim} P$ where P is a prime containing I.

If M is an R-module, then $\text{codim} M = \text{codim} \text{Ann} M$.

Today: 0-dimensional Noetherian rings

If R has dimension zero, then all primes are maximal.

If R is a zero-dimensional domain, then 0 is a maximal ideal and so R is a field.

Recall: A ring R is Artinian if it satisfies the descending chain condition on ideals.
Definition 8.2 (Composition Series). If M is an R-module, a composition series for M is $M = M_0 \supseteq M_1 \supseteq \ldots \supseteq M_n = 0$ with M_i/M_{i+1} a nonzero simple module (has no nontrivial submodules).

The length of M is the smallest length of a composition series for M or ∞ if M has no finite composition series.

- eg: the length of \mathbb{Z} as an \mathbb{Z}-module if ∞.
- eg: the length of $R = k[x]/x^2$ as an R-module is $R \supseteq (x) \supseteq 0$, so 2.

Proposition 8.2. Let R be a ring and let M be an R-module. M has a finite composition series iff M is Artinian and Noetherian.

In this case, any filtration of submodules of M has length at most n and can be refined to a composition series.

Proof. Suppose that M is Artinian and Noetherian. Then by the ACC, M has a maximal proper submodule M_1, which has a maximal proper submodule M_2, etc. This gives a descending chain of proper submodules $M \supseteq M_1 \supseteq M_2 \supseteq \ldots$ where each M_i/M_{i+1} is simple. As M is Artinian, this chain must be finite, so some $M_n = 0$.

Suppose now that M has a finite composition series $M = M_0 \supseteq M_1 \supseteq \ldots \supseteq M_n = 0$. We first show that if $M' \subseteq M$ is a proper submodule, then the length of M' is less than the length of M.

Indeed, consider $M_i' = M' \cap M_i$. Then $M' = M_0' \supseteq M_1' \supseteq \ldots \supseteq M_n' = 0$. And $M_i'/M_{i+1}' = (M' \cap M_i)/(M' \cap M_{i+1}) = M_i'/M_{i+1}/M_i \supseteq M_i/M_{i+1}$. So M_i'/M_{i+1}' is either M_i/M_{i+1} and is simple, or it is zero. There must be at least one i for which $M_i'/M_{i+1}' = 0$, because otherwise we would get $M_i' \supseteq M'$ for all i by descending induction. $M_i = 0 \subseteq M'$, so $M_i = M_i' + M_{i+1} \subseteq M'$ by induction. Then, $M' \supseteq M_0$, which is a contradiction.

This gives a filtration of $M' = M_0' \supseteq M_1' \supseteq \ldots \supseteq M_n' = 0$ where we leave out any repeated factor to get length $< n$. This is a composition series because successive quotients are simple. Thus, if we start with a composition series for M of minimal length, then M' has smaller length.

Now suppose that $M = N_0 \supseteq N_1 \supseteq \ldots \supseteq N_k$ is a chain of submodules of M. By assumption, M has a composition series of length n. We will show that $k \leq n$. When $n = 0$, $M = 0$, so $k = 0$. Assume now that for $m < n$ a composition series of length m implies that all filtrations of submodules have length $\leq m$. Now N_1 is a proper submodule of M, and so has length $< length(M) \leq n$. So this means that $k - 1 < n$, so $k \leq n$.

Thus, every chain of submodules is finite, and so in particular every ascending chain and every descending chain is, so M is Artinian and Noetherian.

Corollary 8.3. If M has length n, then every composition series of M has length n.

Corollary 8.4. If R is of finite length as an R-module, then R is Artinian and Noetherian.

Theorem 8.5. TFAE
1. R is Noetherian and all primes are maximal.

2. R is of finite length as an R-module.

3. R is Artinian.

Proof. 1 \Rightarrow 2: Let R be Noetherian with all primes maximal. Suppose that R is not of finite length as an R-module. Let I be an ideal maximal with respect to the property that R/I is not of finite length as an R-module. We claim that I is prime. If not, we can find $a, b \in R \setminus I$ with $ab \in I$. Then consider $0 \rightarrow R/(I : a) \rightarrow R/I \rightarrow R/(I, a) \rightarrow 0$. Both $(I : a)$ and (I, a) are strictly larger ideals, so $R/(I : a)$ and $R/(I, a)$ have finite length as R-modules. We can now get a finite composition series for R/I from the ones for $R/(I : a)$ and $R/(I, a)$, because length is additive in short exact sequences. This contradicts our assumption on I, so I is prime. As I is prime, it is maximal, so R/I is a field. Which has finite length. This contradiction means that I does not exist, so R has finite length as an R-module.

2 \Rightarrow 3: follows from the previous proposition.

3 \Rightarrow 1: Suppose that R is Artinian. We’ll first show that 0 is a prime of finitely many maximal ideals. Since R is Artinian, we may choose from all ideals in R that are products of finitely many maximal ones a minimal one J. We want to show that $J = 0$. For each maximal ideals M, we must have $MJ = J$, so $J \subseteq M$, so J is contained in the intersection of all maximal ideals. $J^2 = J$.

If J is nonzero, we can find an ideal I of minimal wrt annihilating J. Since $(IJ)J = IJ^2 = IJ \neq 0$, $IJ \subseteq I$. We must have $IJ = I$ by minimality of I. Also, $\exists f \in I$ with $fJ \neq 0$, so $I = (f)$. Since $IJ = I$, $\exists g \in J$ with $fg = f$, so $f(g - 1) = 0$, but $g - 1$ is in no maximal ideal, so it is a unit. Thus $f = 0$, and so $J = 0$ and $J = 0$.

The above is LEMMA: If R has finite length as an R-module, then $0 = M_1 \ldots M_t$ where M_i are maximal. Consider the R-module $V_s = M_1 \ldots M_s/M_1 \ldots M_{s+1}$ for $0 \leq s < t$. This is an R/M_{s+1}-module, and so a vector space. Subspaces of V_s correspond to ideals of R containing $M_1 \ldots M_{s+1}$ and contained in $M_1 \ldots M_s$. Since R is Artinian, V_s must be finite dimensional, so has a finite composition series. We now glue together the composition series for R/M_{1}, $M_1/M_{1}M_{2}$, \ldots to get a finite composition series for R.

So R has finite length as an R-modules, and is thus Noetherian. Now let P be a prime in R. Then $0 = M_1 \ldots M_t \subseteq P$, so at least one $M_i \subseteq P$. But since M_i is maximal, $M_i = P$. Thus we have only a finite number of primes in R, each of which is maximal.

Corollary 8.6. If R is Noetherian and dimension 0, then R is Artinian and there are only finitely many primes. Also, (0) is the product of powers of these primes.

Corollary 8.7. Let $V = V(I) \subseteq k^n$ be a variety over $k = \bar{k}$. TFAE

1. V is a finite set.
2. \(k[x_1, \ldots, x_n]/\sqrt{I} \) is a finite dimensional \(k \)-vector space whose dimension is \(|V| \).

3. \(k[x_1, \ldots, x_n]/\sqrt{I} \) is Artinian.

Proposition 8.8. Let \(R \) be Noetherian and \(M \) a finitely generated \(R \)-module.

TFAE

1. Some finite product of maximal ideals \(\prod_{i=1}^{n} P_i \) annihilates \(M \).

2. All primes that contain the annihilator of \(M \) are maximal.

3. \(R/\text{Ann}(M) \) is Artinian.

Proof. Suppose that \(\prod P_i \) annihilates \(M \). Let \(P \supset \text{Ann}(M) \). Then \(P \supset \prod P_i \).

So there exists \(i \) with \(P_i \subseteq P \), and so \(P_i = P \), as \(P_i \) is maximal.

Let \(P \) be Noetherian, so \(R/\text{Ann}(M) \) is, and every prime in \(R/\text{Ann}(M) \) is maximal, so by the theorem, \(R/\text{Ann}(M) \) is Artinian.

If \(R/\text{Ann}(M) \) is Artinian and Noetherian, then \(0/\text{Ann}(M) = \prod (P_i/\text{Ann}(M)) \), so \(\prod P_i \) annihilate \(M \).

Recall: If \(P \subseteq R \) is prime, \(\text{codim} P = \dim R_P \) (if \((R, m) \) is local, \(\text{codim} m = \dim R \)).

For general \(I \), \(\text{codim} I = \min \text{codim} P \) for \(P \supset I \).

Goal: \(R \) Noetherian.

Theorem 8.9. If \(x_1, \ldots, x_c \in P \) and \(P \) is minimal among primes containing \(x_1, \ldots, x_c \), then \(\text{codim} P \leq c \).

This is a generalization of

Theorem 8.10 (Principle Ideal Theorem). If \(x \in R \) and \(P \) is minimal among primes of \(R \) containing \(x \), then \(\text{codim} P \leq 1 \).

Proof. We will show that every prime \(Q \) properly contained in \(P \) has codim 0.

Since \(P \) is minimal over \(x \), all primes in \(R_P/x \) are maximal (since \(P_P/x \) is the only one) and \(R_P/x \) is Noetherian, so \(R_P/x \) is Artinian. Also, \(x \notin Q \).

Look at the chain \(Q + (x), Q^2 + (x), \ldots \) in \(R_Q \). It must stabilize, so \(Q^n + (x) = Q^{n+1} + (x) \). So for any \(x \in Q^n \), we can write it as \(f = ax + g \) with \(g \in Q^{n+1} \) and \(a \in R_Q \).

So \(ax \in Q^n \), and thus \(a \in Q^n \), since \(x \) is not.

Thus, \(Q^n = xQ^n + Q^{n+1} \), so the finitely generated \(R_Q/Q^{n+1} \)-module \(Q^n/Q^{n+1} \) satisfies \(Q^n/Q^{n+1} = xQ^n/Q^{n+1} \).

The Idea WOULD HAVE BEEN appeal to Nakayama to get that \(Q^n = Q^{n+1} \), and thus, \(Q^n = 0 \) and thus codim \(Q = 0 \). Look in book, and attempt to fill in details.

Theorem 8.11. If \(x_1, \ldots, x_c \in R \) and \(P \) is minimal over primes containing \(x_1, \ldots, x_c \), then \(\text{codim} P \leq c \).
Proof. Localize at P to assume that R has a unique maximal ideal. Then since all primes in $R/(x_1,\ldots,x_c)$ are maximal, as P is the only one, we know that $\text{Ann}(R/(x_1,\ldots,x_c)) \supseteq P^k$ for some k. Choose P_1 prime with $P_1 \subseteq P$ with no primes between them. As R is Noetherian, this exists if $\text{codim} P > 0$.

We will show that P_1 is minimal over an ideal generated by $c-1$ elements, which will, by induction that $\text{codim} P_1 \leq c-1$, and so since P_1 was arbitrary, $\text{codim} P \leq c$.

Since P is minimal over (x_1,\ldots,x_c), there must be an x_i, say x_1, with $x_1 \not\subseteq P_1$. Thus P is minimal over (P_1, x_1), and so there exists $P^s \subseteq (P_1, x_1)$.

So for $2 \leq j \leq c$, we can write $x_j^j = a_j x_1 + y_j$ with $y_j \in P_1$. Now we claim that P_1 is minimal over (y_1,\ldots,y_c). Indeed, P is minimal over (x_1,y_1,\ldots,y_c).

So $\text{codim} P/(y_2,\ldots,y_c)$ in $R/(y_2,\ldots,y_c)$ is 1 by PIT. So $P_1/(y_2,\ldots,y_c)$ has codim 0, and so P_1 is minimal over (y_2,\ldots,y_c).

Corollary 8.12. $(x_1,\ldots,x_n) \subseteq k[x_1,\ldots,x_n]$ has codim n.

Corollary 8.13. Prime ideals in a Noetherian ring satisfy the DCC with the length of a chain of ideals descending from a prime bounded by the number of generators of P.

Corollary 8.14 (Converse to PIT). Any prime P of codim $P = c$ is minimal over an ideal generated by c elements.

eg, $R = k[a,b,c,d]$ and $I = (ad-bc, ac-b^2, bd-c^2)$. $\dim R/I = 2$.

Corollary 8.15. Any prime P of codim c is minimal over an ideal generated by c elements. (actually of codim c)

Proof. The proof is by induction on c.

If $c = 0$, then P is minimal over 0, which has codim 0.

Now suppose that the corollary is true for smaller c and choose P_1 prime, maximal proper in P of codim $c-1$.

Then, by induction, P_1 is minimal over (x_1,\ldots,x_{c-1}) of codim $c-1$. Each prime Q_i minimal over (x_1,\ldots,x_{c-1}) has codimension $c-1$.

So $P \subseteq Q_i$ for any Q_i minimal over (x_1,\ldots,x_{c-1}), so by prime avoidance, $P \not\subseteq \cup Q_i$. So we can find $x_c \in P \setminus \cup Q_i$. Then we must have P minimal over (x_1,\ldots,x_c), as if $P' \subseteq P$ contains it, then there exists P'' minimal over (x_1,\ldots,x_{c-1}) which has codim $c-1$, so $\text{codim} P > c$, which is impossible.

Also, if Q is minimal over (x_1,\ldots,x_c), then $\exists P'$ with $(x_1,\ldots,x_{c-1}) \subseteq P' \subseteq Q$ and codim $P \geq c-1$. So codim $Q \geq c$. By PIT, $\text{codim} Q = c$, so codim$(x_1,\ldots,x_c) = c$.

Corollary 8.16. Let (R,m) be a local ring. Then $\dim R = \min\{d|\exists x_1,\ldots,x_d \in m \text{ with } m^n \subseteq (x_1,\ldots,x_d) \text{ for } n > 0\}$.

Proof. If $m^n \subseteq (x_1,\ldots,x_d) \subseteq m$, then m is minimal over (x_1,\ldots,x_d). So codim $m = \dim R \leq d$ by the PIT.

Conversely, if $d = \dim R = \text{codim} m$, then by the converse to the PIT, $\exists x_1,\ldots, x_d$ with m minimal over (x_1,\ldots,x_d). But $R/(x_1,\ldots,x_d)$ has only the
one prime ideal, we have that all elements of m are nilpotent module (x_1, \ldots, x_d). So $\exists k$ such that $m^k \subset (x_1, \ldots, x_d)$, because the ring is Nötherian. (since if $m = (y_1, \ldots, y_s)$, $y_i^n = 0$ for all i, then $m^{sN} = 0$)

Definition 8.3 (System of Parameters). A system of parameters for $m \subset R$ with (R, m) local, is a sequence x_1, \ldots, x_d, $d = \dim R$ such that $m^n \subset (x_1, \ldots, x_d)$ for $n >> 0$.

Parameters are a “local coordinate system” (up to finite ambiguity). eg, $k[x, y]((x, y))$, parameters $(x^2 - y, y)$, so (up to the square) you are picking a horizontal line and a parabola to determine a point (determines 2, but that’s finite ambiguity).

Recall: A family of varieties is $U \to B$. The fiber over b is “$\pi^{-1}(b)$” Algebraically, this is a map $R \to S$ with fiber over $P \subset R$ being $S \otimes R/P \simeq S/PS$.

We expect $\dim U \leq \dim B + \dim \pi^{-1}(b)$ for each b. Recall the blowup, $\pi^{-1}(0)$ has dimension 1 and $\dim B = \dim U = 2$ for the plane at the origin.

Theorem 8.17. If $(R, m) \to (S, n)$ is a map of local rings, then $\dim S \leq \dim R + \dim S/mS$.

Proof. Write $d = \dim R$, $e = \dim S/mS$. Then there exist x_1, \ldots, x_d, s with $m^s \subset (x_1, \ldots, x_d)$ and y_1, \ldots, y_e, t such that $n^t \subset (y_1, \ldots, y_e)$.

Then, $n^{st} \subset ((y_1, \ldots, y_e) + mS)^s \subset m^sS + (y_1, \ldots, y_e) \subset (x_1, \ldots, x_d, y_1, \ldots, y_e)S$, so n is minimal over n ideal generated by $d + e$ elements, so $\text{codim } n = \dim S \leq d + e = \dim R_+ \sim S/mS$. \qed

Theorem 8.18. If $(R, m) \to (S, n)$ is a map of local rings and S is flat over R, then $\dim S = \dim R_+ + \dim S/mS$.

We'll need the following:

Lemma 8.19. If N is a flat R-module and $R \to T$ is any ring map, then $N \otimes_R T$ is flat over T.

Lemma 8.20. Suppose $\varphi : R \to S$ is a map of rings with S flat over R. If $P \supset P'$ are primes of R, and Q is a prime of S with $\varphi^{-1}(Q) = P$, then $\exists Q' \subset S \cap Q$ contained in Q with $\varphi^{-1}(Q') = P'$.

Corollary 8.21. If (R, m) is a local ring, then $\dim \hat{R}_m = \dim R$.

Proof. \hat{R}_m is flat over R and $\hat{R}_m/\hat{R} \simeq R/m$ is a field, so $\dim \hat{R}_m/\hat{R} = 0$. \qed

Theorem 8.22. 1. If k is a field, then $\dim k[x_1, \ldots, x_n] = n$.

2. In general, $\dim R[x] = \dim R + 1$

3. If P is a prime of R, then \exists a prime Q of $R[x]$ with $Q \cap R = P$, and for a maximal such ideal, $\dim R[x]Q = 1 + \dim R_P$, so $\text{codim}_{R[x]} Q = 1 + \text{codim}_R P$.

Proof. 1. Follows from 2 by induction on n. 39
2. If \(P_1 \subset \ldots \subset P_d \) of \(R \), we get \(P_1 R[x] \subset P_2 R[x] \subset \ldots \subset P_d R[x] \subset P_d R[x] + (x) \). (using \(PR[x] \cap R = P \) and if \(P \) is prime then \(PR[x] \) is prime). So \(\dim R[x] \geq \dim R + 1 \).

Conversely, if \(Q \) is a maximal ideal of \(R[x] \), then \(Q \) is maximal among primes meeting \(Q \cap R \), so by part 3, we get \(\text{codim } Q = 1 + \text{codim } Q \cap R \), so \(\dim R[x] \leq 1 + \dim R \).

3. We first prove the case where \(R \) is a field and \(P = 0 \). Then \(Q \cap R = 0 \) for any proper prime of \(R[x] \), so we take \(Q \) to be any maximal ideal of \(R[x] \).

Then \(\text{codim } Q = 1 = 1 + \dim R \).

In general, \(PR[x] \) is a prime in \(R[x] \) with \(PR[x] \cap R = P \). Localize at \(P \) to assume that \(R \) is local and \(P \) is maximal. Let \(Q \) be a maximal ideal of \(R[x] \) containing \(P \). Then \(Q \cap R = P \). So all the remains to be shown is that \(\text{codim } Q = 1 + \dim P \).

If \(P_0 \subset \ldots \subset P_d = P \) is a chain of primes in \(P \), then \(P_0 R[x] \subset \ldots \subset P_d R[x] \) is a chain in \(R[x] \). Look at \(Q/PR[x] \subseteq R[x]/PR[x] \simeq (R/P)[x] \), then \(\text{codim } Q/PR[x] = 1 \). So \(\text{codim } Q \geq d + 1 \).

Then \(\text{codim } Q \leq \dim R_P + \dim R[x]Q/PR[x]Q = \dim R_P + 1 = \text{codim } P + 1 \).

\(\square \)

Therefore, \(\dim k[x_1, \ldots, x_n] = n \).

Definition 8.4 (Regular Local Ring). A ring \((R, m) \) of dimension \(d \) is a regular local ring if \(m \) can be generated by \(d \) elements.

If \(R \) is a regular local ring, then Nakayama says that \(\dim_{R/m} m/m^2 = d \). Thus, every generating set for \(m \) has size \(d \).

A generating set of size \(d \) is called a regular sequence of parameters.

Definition 8.5 (Regular Sequence). In general, a regular sequence is a sequence \(x_1, \ldots, x_d \) such that \((x_1, \ldots, x_d) \) is proper and \(x_{i+1} \) is a nonzero-divisor on \(R/(x_1, \ldots, x_i) \) for all \(i \).

Definition 8.6 (Cohen-Macaulay). A ring \(R \) is Cohen-Macaulay if there is a regular sequence of length \(\dim R \).

Goal: \(\deg P_R + 1 = \dim R \).

Let \(R = \bigoplus_{i \geq 0} R_i \) be a Noetherian graded ring with \(R_0 \) a field and \(R \) is generated as an \(R_0 \)-algebra by \(R_1 \). This is sometimes called a standard-graded algebra.

This means \(R = k[x_1, \ldots, x_n]/I \) for some \(n \) and homogeneous \(I \).

Why? Because \(R \) is Noetherian, \(R_1 \) is a finite dimensional \(R_0 \)-vector space. Then \(k[x_1, \ldots, x_n] \) surjects onto \(R \), so take \(I \) to be the kernel, which is homogeneous as this is a graded homomorphism of rings.

Definition 8.7 (Hilbert Function). The Hilbert function of \(R \) is \(H_R(t) = \dim_k R_t \).
In homework, we showed that there exists a polynomial $P_R(t)$ which is equal to the Hilbert Function for sufficiently large t.

If M is a graded R-module, then $H_M(t) = \dim_k M_t$. Again, it eventually will agree with a polynomial.

Lemma 8.23. If $0 \to M' \to M \to M'' \to 0$ is a graded (ie, degree 0) short exact sequence of modules, then $H_M(t) = H_{M'}(t) + H_{M''}(t)$.

Proof. The ses is the direct sum of ses $0 \to M'_d \to M_d \to M''_d \to 0$ of k-vector spaces, so additivity follows. \qed

Lemma 8.24. If x is a nonzero divisor on R, homogeneous of degree 1, then $H_R(t) = H_R(t-1) + H_{R/x}(t)$ so $P_{R/x}(t) = P_R(t) - P_R(t-1)$ for all t, so $\deg P_R = \deg P_{R/x} + 1$.

Proof. Consider the ses $0 \to R[-1] \xrightarrow{x} R \to R/x \to 0$ where $R[-1]$ is R with graded $R[-1]_n = R_{n-1}$. In general, $R[a]_b = R_{a+b}$.

So $H_R(t) = H_{R[-1]}(t) + H_{R/x}(t) = H_R(t-1) + H_{R/x}(t)$. \qed

Fact: If R is graded et cetera, then $\dim R = \max\{\text{codim } Q|Q$ is a homogeneous prime$\}$.

Proposition 8.25. If $\deg(x) > 0$ and x is a nonzero divisor on R then $\dim R/x = \dim R - 1$.

Proof. Since x is a nzd, x is not contained in any associated prime, so in particular, x does not lie in any minimal prime.

If $P_0 \subset \ldots \subset P_d$ is a chain of primes in R/x, that is, a chain of primes in R containing x, then \exists prime $P \subsetneq P_0$ so $\dim R > \dim R/x$.

It remains to show that $\dim R/x \geq \dim R - 1$. Since R is graded and $\dim R < \infty$, there is a homogeneous prime Q with $\text{codim } Q = \dim R$. Suppose that $\dim R/x = e < \dim R - 1$ with $d = \dim R$.

We know that $x \in Q$ since (Q,x) is proper (since Q, x are homogeneous) so contained in a maximal ideal. But Q is maximal. This means that R_Q has $\dim \leq e$. So there are $x_1, \ldots, x_e \in Q$ with $Q^e_Q \subseteq (x_1, \ldots, x_e) + (x)$ for $n > 0$. So $Q^e_Q \subseteq (x_1, \ldots, x_e, x)$, and so $\text{codim } Q = \dim R_Q \leq e + 1$, so $d \leq e + 1$. \qed

Theorem 8.26. $\dim R = \deg P_R + 1$

Proof. The proof is by induction on dimension. If $\dim R = 0$, then R is Artinian.

So finite length ℓ as an R-module, so every filtration has length $\leq \ell$. If $R_{\ell+1} \neq 0$ $R \subset R_{\ell+1} \subset R_{\ell+1} \subset \ldots \subset R_{\ell+1}$ is a filtration of length $\ell + 1$. If $R_{\ell+1} = R_{\ell+1} = 0$, then $R_n = 0$ for $n \geq j + 1$.

So this means that $R_n = 0$ for $n > > 0$, so $P_R(t) = 0$ which has degree -1 by convention.

We now assume that $\dim R > 0$ and that the theorem is true for smaller dimension. We first reduce to the case that $m = R_{>0}$ is not an associated prime. Since the zero divisors on R are the union of the associated primes, this will let us find a homogeneous nonzero divisor (of degree 1)
Let \(J = (0 :_R m^\infty) = \{ f \in R | \exists k \text{ with } fm^k = 0 \} = f \in R | \exists k \text{ with } fg = 0 \) for all \(g \in m^k \).

Let \(R' = R/J \). First note that \(m \) is not associated to \(R' \), since if \((0 : x) = m \), then \(x \in J \). Also note that \(P_R = P_{R'} \) because \(J_t = 0 \) for \(t >> 0 \), because \(J = (f_1, \ldots, f_s) \) for some \(s \), where we can take \(f_i \) homogeneous.

Then there is a \(k \) such that \(f_i m^k = 0 \) for all \(i \), then \(J_t = 0 \) for \(t >> k + \max \dim f_i \). So \(R_t = R'_{t} \) for \(t >> 0 \) so \(P_R = P_{R'} \).

Also, \(\dim R = \dim R' \), so since if \(P_0 \subset \ldots \subset P_d \) is a chain of length \(d = \dim R \) in \(R \), then since \(\dim R > 0 \), \(P_0 \neq m \), so we can find \(x \in m \setminus P_0 \) homogeneous, and then if \(f \in J, fx^k = 0 \) for \(k >> 0 \) so \(fx^k \in P_0 \), so \(f \in P_0 \). Thus \(J \subseteq P_0 \), so \(\dim R' = \dim R \).

Thus, we assume that \(m \) is not an associated prime of \(R \). So we can find \(x \in R_1 \) a nonzerodivisor on \(R \). Then \(\dim R/x = \deg P_{R/x} + 1 \), by induction. And so, \(\dim R = \dim R/x + 1 \) and \(\deg P_R = \deg P_{R/x} + 1 \), so \(\dim R = \deg P_R + 1 \).

Fact: \(R \) graded, etc, then \(\dim R = \max \text{codim of homogeneous } Q \). Why?

Follows from \(\dim k[x_1, \ldots, x_n]/I = \text{tr.deg}_k R \) and all maximal ideals have the same codimension. This itself follows from Noether Normalization.

Theorem 8.27 (Noether Normalization). If \(R = k[x_1, \ldots, x_n]/J \) then there exist \(y_1, \ldots, y_d \in R \) such that \(k[y_1, \ldots, y_d] \subseteq R \) and \(R \) is finite over \(S \). (can take \(y_i \) to be homogeneous).