Oral Examination Syllabus for Eugene So

Major Topic: Homotopy Theory

Fundamental Groups
Van Kampen Theorem, Covering Spaces

Homology/Cohomology
Singular, Cellular, Simplicial Homology
Excision, Mayer-Vietoris, Cofibrations
Cup and Cap Products, Künneth Formula
Poincaré Duality, Alexander Duality
Universal Coefficient Theorem
Spectral Sequences

Homotopy Groups
Whitehead’s Theorem, Hurewicz Theorem, CW-Approximation, Cellular Approximation
Eilenberg-MacLane Spaces, Freudenthal Suspension Theorem, Postnikov Towers
Brown Representability

Fiber Bundles and Fibrations
Replacement by Fibrations, Homotopy Sequence of a Fibration
Homotopy Extension and Lifting Theorem
Classification of Fiber Bundles
Characteristic Classes

Simplicial Theory
Geometric Realization, Singular Simplicial Complex, Kan Complexes
Simplicial Homotopy Groups, Dold-Kan Correspondence, Eilenberg-Zilber Theorem

Model Categories
Definition, Homotopy Category, Fundamental Theorem, Examples, Small Object Argument

Texts
Algebraic Topology (Hatcher)
A Concise Course in Algebraic Topology (May)
An Introduction to Homological Algebra (Weibel)
Simplicial Objects in Algebraic Topology (May)
Model Categories (Hovey)
Minor Topic: Complex Algebraic Geometry

Complex Geometry (Griffiths and Harris, Ch. 0.1-2, 0.4-7, 1.1-4)
Complex, Kähler Manifolds
Hodge, Lefschetz Decomposition
Holomorphic Vector Bundles, Line Bundles
Kodaira Vanishing, Kodaira Embedding

Riemann-Roch, Abel’s Theorem (Miranda, Ch. V-VIII)
Divisors, Embeddings, Abel-Jacobi Map
Riemann-Roch, Geometric Riemann-Roch, Abel’s Theorem

Cohomology (Griffiths and Harris, Ch. 0.3, 1.1; Miranda, Ch. IX)
De Rham, Dolbeaut, Čech Cohomology
De Rham Theorem, Dolbeaut Theorem
Chern Classes

Texts
Principles of Algebraic Geometry (Griffiths and Harris)
Algebraic Curves and Riemann Surfaces (Miranda)