1. Fundamentals of Real Analysis, emphasis on Banach and Hilbert Space Theory; *par exemplar*

 (a) Bounded if and only if Continuous
 (b) Open Mapping Theorem
 (c) Hahn-Banach Theorem
 (d) Riesz Representation Theorem
 (e) Contraction Mapping Theorem (Banach Fixed Point Theorem)

2. Partial Differential Equations

 (a) Laplace’s and Poisson’s Equation
 i. Fundamental Radial Solutions
 ii. Mean-Value Property, Max and Min Principles
 iii. Representation Formulae, Green’s Functions for Ball and Half Space
 iv. Perron’s Method, Properties of Sub/Super-Harmonic Functions
 v. Boundary Regularity, Barriers
 (b) Weak Solutions and Sobolev Spaces
 i. Hölder Spaces
 ii. Sobolev Embedding Theorems: Rellich Theorem, Kondrachov Compactness
 iii. Weak Derivatives, Weak Solutions, *etcetera*
 (c) General Variable Elliptic PDE through Functional Analysis
 i. Lax-Milgram Theorem
 ii. Fredholm Alternative
 iii. Application to Hodge Decomposition Theorem
 (d) General First Order Nonlinear PDE
 i. Method of Characteristics: ODE, Boundary Conditions, Application
 ii. General Conservation Laws: Formation of Shocks, Rankine-Hugoniot
 iii. Burger’s Equation: Hopf’s Method, Uniqueness of Solutions, Entropy Criterion

3. References:

 (a) Evans “Partial Differential Equations” Chapters 2.2, 3, 5, 6 and Appendices
 (b) Gilbarg and Trudinger “Elliptic Partial Differential Equations of Second Order” Chapters 2, 3, 4, 5, 7, 8
 (c) Hörmander “Lectures on Hyperbolic Non-linear Differential Equation” Ch. 2