Category Theory in Geometry

Abigail Timmel

Mentor: Thomas Brazelton
Categories

Category: a collection of objects and morphisms between objects

- Every object \(c \) has an identity morphism \(I_c \)
- For morphisms \(f : c \to d \) and \(g : d \to e \), there is a composite morphism \(gf : c \to e \)

Examples:
- Sets & functions
- Groups & group homomorphisms
- Topological spaces & continuous functions
An **isomorphism** is a morphism $f : c \to d$ with $g : d \to c$ so that $fg = I_d$ and $gf = I_c$.

Examples
- **Set**: bijections
- **Group**: group isomorphisms
- **Top**: homeomorphisms
Functors

Functor: a map $F : C \rightarrow D$ between categories taking objects to objects and morphisms to morphisms

- Preserves identity morphisms
- Preserves function composition

Examples:

- **Forgetful:** Group \rightarrow Set sends groups to sets of elements
- **$C(c, -)$:** $C \rightarrow$ Set sends x to set of morphisms $c \rightarrow x$ and morphisms $x \rightarrow y$ to $C(c,x) \rightarrow C(c,y)$ by postcomposition
- **Constant:** $C \rightarrow c$ sends every object in C to c, every morphism to the identity on c
An indexing category J of a certain shape

A functor F assigning objects and morphism in C to that shape

Diagram $F : J \to C$:

- An indexing category J of a certain shape
- A functor F assigning objects and morphism in C to that shape
Natural transformations $F \Rightarrow G$ of functors $F, G : C \to D$:

- A collection of morphisms called components $\alpha_c : Fc \to Gc$
- For all $f : c \to c'$, the diagram commutes

If the components are isomorphisms, we have a natural isomorphism $F \cong G$
Cones

A natural transformation between the constant functor $c : J \to C$ and the diagram $F : J \to C$.

The components λ_j are called legs.
Universal Properties

A functor $F : \mathcal{C} \to \text{Set}$ is **representable** if there is an object c in \mathcal{C} so that $\mathcal{C}(c, -) \cong F$

- Recall $\mathcal{C}(c, -)$ takes an object c' to the set of morphisms $c \to c'$

The functor F encodes a **universal property** of c
A limit is a universal cone:

- There is a natural isomorphism $\text{C}(\; -, \text{lim} \ F) \cong \text{Cone}(\; -, \ F)$

- Morphisms $c \rightarrow \text{Lim} \ F$ are in bijection with cones with summit c over F
Limits in Geometry

Product

Diagram shape

Product of spaces

Spaces
Limits in Geometry

Pullback

Diagram shape

Spaces

Fiber of $x = i(*)$
Category Theory is everywhere

- Mathematical objects and their functions belong to categories
- Maps between different types of objects/functions are functors
- Universal properties such as limits describe constructions like products and fibers
Reference

“Category Theory in Context” by Emily Riehl