Degree and Intersection Theory

AIRIKA YEE
University of Pennsylvania

Mentor: Artur B. Saturnino

The aim of this presentation is to prove the Jordan Brouwer Separation Theorem.
Definitions

Degree of a Map

\[\deg_2 f = \# f^{-1}(y) \mod 2 \]
DEFINITIONS

DEGREE OF A MAP

\[\text{deg}_2 f = \# f^{-1}(y) \mod 2 \]

DIRECTIONAL MAP

Given a compact, connected manifold \(X \) and a smooth map \(f : X \rightarrow \mathbb{R}^n \), the directional map of any \(z \in \mathbb{R}^n \) not in the image of \(f(x) \) is defined as:

\[
u : X \rightarrow S^{n-1}\
\]

\[
u(x) = \frac{f(x) - z}{|f(x) - z|}\
\]
WINDING NUMBER

\[W_2(f, z) = \text{deg}_2(u) \]
The complement of the compact, connected manifold X consists of two connected open sets: the outside D_0 and an inside D_1.
Any fixed point in $\mathbb{R}^n - X$ can be joined to a point in a neighborhood of some $x \in X$ without intersecting X.

STEP ONE
Any fixed point in $\mathbb{R}^n - X$ can be joined to a point in a neighborhood of some $x \in X$ without intersecting X.

[JORDAN BROUWER SEPARATION THEOREM]
\[\mathbb{R}^n \setminus X = D_0 \cup D_1 \text{ with } D_0, D_1 \text{ disjoint.} \]
JORDAN BROUWER SEPARATION THEOREM

\[\mathbb{R}^n \setminus X = D_0 \cup D_1 \text{ with } D_0, D_1 \text{ disjoint.} \]

STEP TWO

\(\mathbb{R}^n - X \) has, at most, 2 connected components.
STEP TWO

$\mathbb{R}^n - X$ has, at most, 2 connected components. Points in the same connected component have the same winding number.

Homotopy between z_0, z_1 directional maps.

$$u_t(x) = \frac{x - z_t}{|x - z_t|}$$

Degree is invariant under homotopy.

$$\text{deg}_2(u_0) = \text{deg}_2(u_1)$$

$$W_2(X, z_0) = W_2(X, z_1)$$

JORDAN BROUWER SEPARATION THEOREM

$$\mathbb{R}^n \setminus X = D_0 \cup D_1$$ with D_0, D_1 disjoint.
Consider a ray, $r = \{z + t\bar{v} : t \geq 0\}$ that intersects X.

\[W_2(X, z_0) = W_2(X, z_1) + l \mod 2 \]
Consider a ray, \(r = \{ z + t \vec{v} : t \geq 0 \} \) that intersects \(X \).

\[u^{-1}(z_0, v) = \{ l_1, l_2, l_3, l_4 \} \]

\[W_2(X, z_0) = W_2(X, z_1) + l \mod 2 \]
STEP FOUR

$R^n - X$ has precisely two components.

\[D_0 = \{ z : W_2(X, z) = 0 \} \]

\[D_1 = \{ z : W_2(X, z) = 1 \} \]
STEP FOUR

\(R^n - X \) has precisely two components.

\[D_0 = \{ z : W_2(X, z) = 0 \} \]
\[D_1 = \{ z : W_2(X, z) = 1 \} \]
JORDAN BROUWER SEPARATION THEOREM

\[\mathbb{R}^n \setminus X = D_0 \cup D_1 \text{ with } D_0, D_1 \text{ disjoint.} \]

STEP FIVE

If \(z \) is very large, then \(W_2(X, z) = 0 \).
(i.e., \(D_0 \) is the “outside” of \(X \)).
We’ve shown that a simple, closed curve in \mathbb{R}^n can be separated into an “inside” and “outside,” which can be identified by the mod 2 winding number.
The idea of a direction map is seen in the proof of other theorems.
Ex: Poincare-Hopf Theorem

• Really interesting results from counting points!
• Thank you Artur for the past two semesters in the Directed Reading Program!
THANK YOU