MATH 203, PROBLEM SET 2

DUE IN LECTURE ON FRIDAY, JAN. 27.

1. Suppose $A = \{a_1, a_2\}$ is a set with two elements. How many relations between A and A are there? How many of these are partial orders? How many are total orders?

Extra Credit: Answer the same questions when $A = \{a_1, a_2, a_3\}$ has 3 elements. I recommend trying this only after you’ve finished all the other problems.

2. Suppose $A = \{a_1, a_2, \ldots , a_n\}$ is a finite set with $n > 0$ distinct elements. Let \leq be a total order on A.

 i. Use induction on n to show that there is a smallest element $s(A)$ of A. Recall that this means $s(A) \leq x$ for all $x \in A$.

 Hints: If $A' = \{a_1, \ldots, a_n, a_{n+1}\}$ and $A = \{a_1, \ldots, a_n\}$, what should $s(A')$ be in terms of a_{n+1} and $s(A)$?

 ii. Use induction on n to show that there are exactly $n! = n \cdot (n-1) \cdots 2 \cdot 1$ possible total orders \leq on A.

 (Hint: For the induction step, suppose $A' = \{a_1, \ldots, a_n\}$ has $n+1$ elements. Show that there is a bijection between the set of total orders \leq' on A' and the set of pairs (x, \leq) in which x is an element of A' and \leq is a total order on $A' - \{x\}$, where $A' - \{x\}$ has n elements. This bijection can be arranged so that x is the smallest element of A' with respect to \leq'.)

3. Show that if D is an infinite subset of a model \mathbb{N} of the integers then D is countable.

 Hints: Use a bijection between \mathbb{N} and the standard model $\mathbb{Z}^+ = \{1, 2, 3, \ldots \}$ of the positive integers to show it is enough to consider the case in which \mathbb{N} is \mathbb{Z}^+. You need to show there is a bijection $f : \mathbb{Z}^+ \rightarrow D$ given that D is an infinite subset of \mathbb{Z}^+. Use induction to show that for each n in \mathbb{Z}^+, there is a map $f_n : \{1, \ldots, n\} \rightarrow D$ such that $f_1(1)$ is the smallest element of D, $f_{n-1}(m) = f_n(m)$ if $n > 1$ and $m \in \{1, \ldots, n-1\}$, and $f_n(n)$ is the smallest element of $D - \{f_{n-1}(1), \ldots, f_{n-1}(n-1)\}$ if $n > 1$. Then use these f_n’s to define f. You can use the fact that \mathbb{Z}^+ is well ordered, which was proved in class.

4. Show that the product set $(\mathbb{Z}^+)^2 = \{(a, b) : a, b \in \mathbb{Z}^+\}$ has the same cardinality as \mathbb{Z}^+.

 Hints: Show that for $n = 1, 2, 3, \ldots$, there is a bijection f_n from $\{1, \ldots, n(n+1)\}$ to the set $T_n = \{(a, b) \in \mathbb{Z}^+, a + b \leq n + 1\}$ such that $f_1(1) = (1, 1)$ and f_n agrees with f_{n-1} on $\{1, \ldots, \frac{n(n-1)}{2}\}$ if $n > 1$. To see what is going on, plot the points in T_n for some small values of n. You can use without proof the identity $\sum_{j=1}^{n} = \frac{n(n+1)}{2}$ which we proved in class. Then use these f_n to define a bijection $f : \mathbb{Z}^+ \rightarrow (\mathbb{Z}^+)^2$.

5. Show the set \mathbb{Q}^+ of rational numbers is countable.
Extra Credit: Show that the set \mathbb{Q} of all rationals is countable.

Hints: You can use without proof that every positive rational has the form $\frac{a}{b}$ for a unique ordered pair (a, b) of positive integers. Show this identifies \mathbb{Q}^+ with an infinite subset of $(\mathbb{Z}^+)^2$, and the use problems 3 and 4 above.