1. Unitary linear maps

This problem is relevant to quantum computing. Let \(\mathbb{C} \) be the complex numbers, and suppose \(n \geq 1 \). The \(n \)-dimensional vector space \(\mathbb{C}^n \) is the set of all \(n \)-tuples \(\mathbf{a} = (a_1, \ldots, a_n) \) of complex numbers \(a_i \). This becomes a group under addition when we define

\[
\mathbf{a} + \mathbf{b} = (a_1 + b_1, \ldots, a_n + b_n)
\]

for \(\mathbf{b} = (b_1, \ldots, b_n) \). The identity element is \(\mathbf{0} = (0, \ldots, 0) \). We can also multiply elements \(\mathbf{a} \in \mathbb{C}^n \) by scalars \(r \in \mathbb{C} \) by letting

\[
r \cdot \mathbf{a} = (ra_1, \ldots, ra_n).
\]

A map \(f : \mathbb{C}^n \to \mathbb{C}^n \) is \(\mathbb{C} \)-linear if

\[
f(\mathbf{a} + \mathbf{b}) = f(\mathbf{a}) + f(\mathbf{b}) \quad \text{and} \quad f(r \cdot \mathbf{a}) = rf(\mathbf{a})
\]

for all \(\mathbf{a}, \mathbf{b} \in \mathbb{C}^n \) and \(r \in \mathbb{C} \). The complex inner product \(\langle \phantom{\mathbf{a}}, \phantom{\mathbf{b}} \rangle \) on \(\mathbb{C}^n \) is defined by

\[
\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i \overline{b_i}
\]

where \(\overline{b_i} \) is the complex conjugate of \(b_i \).

1. The Unitary group \(U(n) \) is defined as the set of all \(\mathbb{C} \)-linear bijections \(f : \mathbb{C}^n \to \mathbb{C}^n \) such that

\[
\langle f(\mathbf{a}), f(\mathbf{b}) \rangle = \langle \mathbf{a}, \mathbf{b} \rangle
\]

for all \(\mathbf{a}, \mathbf{b} \in \mathbb{C}^n \). Show that \(U(n) \) is a group when we define the group law to be the composition of maps, so that \((f \circ h)(\mathbf{a}) = f(h(\mathbf{a})) \) for \(f, h \in U(n) \) and \(\mathbf{a} \in \mathbb{C}^n \). Show that \(f(\mathbf{0}) = \mathbf{0} \), and that \(f \) maps \(S = \{ \mathbf{a} : \sum_{i=1}^{n} |a_i|^2 = 1 \} \) bijectively to \(S \).

2. The vector space \(\mathbb{C}^n \) has a basis \(v_1, \ldots, v_n \) such that \(v_1 = (1,0,\ldots,0) \), \(v_2 = (0,1,\ldots,0) \), ..., \(v_n = (0,0,\ldots,0,1) \). To a \(\mathbb{C} \)-linear map \(f : \mathbb{C}^n \to \mathbb{C}^n \) we can associate an \(n \times n \) matrix \(M(f) = (a_{i,j})_{1 \leq i,j \leq n} \) with entries in \(\mathbb{C} \) such that

\[
f(v_j) = \sum_{i=1}^{n} a_{i,j} v_i
\]

for \(j = 1, \ldots, n \). (This corresponds to treating \(v_j \) as a column vector and multiplying \(v_j \) on the left by \(M(f) \) to arrive at \(f(v_j) \).) If \(B = (b_{i,j}) \in \text{Mat}_{n,n}(\mathbb{C}) \) is any \(n \times n \) matrix, define \(B^* = (b_{i,j}^*) \) to be the matrix whose \((i, j)\) entry is \(b_{i,j}^* = \overline{b_{j,i}} \). Call \(B \) a unitary matrix if \(B^* \cdot B \) equals the identity matrix \(I \).

a. Show that a \(\mathbb{C} \)-linear bijection \(f : \mathbb{C}^n \to \mathbb{C}^n \) is in the unitary group \(U(n) \) if and only if its matrix \(M(f) \) is unitary. This means that the map \(f \mapsto M(f) \) gives an isomorphism between the unitary group \(U(n) \) and the group \(\tilde{U}(n) \) of all unitary matrices under multiplication.
Hints: Show that \(\langle v_j, v_i \rangle \) equals 1 (resp. 0) if \(i = j \) (resp. if \(i \neq j \)). Then use the linearity of \(f \) to show \(\langle f(v_j), f(v_i) \rangle \) is the \((i, j)\) entry in the product matrix \(M(f)^* \cdot M(f) \). Then show that \(f \) is unitary if and only if \(\langle f(v_j), f(v_i) \rangle = \langle v_j, v_i \rangle \) for all \(i \) and \(j \), and that this is true if and only if \(M(f)^* \cdot M(f) = I \).

b. Suppose that \(\sigma : \{v_1, \ldots, v_n\} \to \{v_1, \ldots, v_n\} \) is a permutation of \(\{v_1, \ldots, v_n\} \). Show that there is a unique element \(f_\sigma \in U(n) \) such that \(f_\sigma(v_i) = \sigma(v_i) \) for all \(i = 1, \ldots, n \). Prove that the matrix \(M(f_\sigma) \) has exactly one non-zero entry in each row and each column, and each such entry equals 1. Show the map \(\sigma \to f_\sigma \) gives an injective group homomorphism from \(S_n = \text{Perm}(v_1, \ldots, v_n) \) to \(U(n) \).

3. Suppose \(n, m \geq 1 \). The vector space \(\mathbb{C}^n \) has basis \(\{v_1, \ldots, v_n\} \) as above. Let \(\{w_1, \ldots, w_m\} \) be the corresponding basis for \(\mathbb{C}^m \). To each pair \((v_i, w_j)\) we define a symbol \(v_i \otimes w_j \) to stand for this pair. The tensor product \(\mathbb{C}^n \otimes \mathbb{C}^m \) is the vector space of all formal sums

\[
h = \sum_{1 \leq i \leq n, 1 \leq j \leq m} c_{i,j} (v_i \otimes w_j)
\]

in which the \(c_{i,j} \) are in \(\mathbb{C} \). This sum is equal to another one

\[
h' = \sum_{1 \leq i \leq n, 1 \leq j \leq m} c'_{i,j} (v_i \otimes w_j)
\]

if and only if \(c_{i,j} = c'_{i,j} \) for all \(i \) and \(j \). Define

\[
h \pm h' = \sum_{1 \leq i \leq n, 1 \leq j \leq m} (c_{i,j} \pm c'_{i,j}) (v_i \otimes w_j)
\]

and

\[
rh = \sum_{1 \leq i \leq n, 1 \leq j \leq m} rc_{i,j} (v_i \otimes w_j)
\]

for \(r \in \mathbb{C} \). We can define an complex inner product \(\langle , \rangle \) on \(\mathbb{C}^n \otimes \mathbb{C}^m \) by saying that

\[
\langle h, h' \rangle = \sum_{1 \leq i \leq n, 1 \leq j \leq m} c_{i,j} \overline{c'_{i,j}}.
\]

a. Suppose \(f : \mathbb{C}^n \to \mathbb{C}^n \) is a \(\mathbb{C} \)-linear transformation, and that \(f(v_i) = \sum_{k=1}^{n} a_{k,i}v_i \) for some constants \(a_{k,i} \in \mathbb{C} \). Show that there is a unique \(\mathbb{C} \)-linear transformation \(F : \mathbb{C}^n \otimes \mathbb{C}^m \to \mathbb{C}^n \otimes \mathbb{C}^m \) for which

\[
F(v_i \otimes w_j) = f(v_i) \otimes w_j = (\sum_{k=1}^{n} a_{k,i}v_k) \otimes w_j = \text{def} \sum_{k=1}^{n} a_{k,i}(v_k \otimes w_j)
\]

for all \(1 \leq i \leq n \) and \(1 \leq j \leq m \).

b. Suppose \(f \) is unitary with respect to the inner product \(\langle , \rangle \) on \(\mathbb{C}^n \) described above. Show that then \(F \) preserves the inner product \(\langle , \rangle \) in the sense that \([F(h), F(h')] = [h, h'] \) for all \(h, h' \in \mathbb{C}^n \otimes \mathbb{C}^m \). This means that a unitary \(f \) defines an \(F \) which is unitary with respect to \(\langle , \rangle \).

Hints: First show that for all \(h, h_1, h', h'_1 \in \mathbb{C}^n \otimes \mathbb{C}^m \) one has

\[
[h + h_1, h' + h'_1] = [h, h'] + [h, h'_1] + [h_1, h'] + [h_1, h'_1]
\]

and

\[
[rh, h'] = r[h, h'] = [h, rh'] \quad \text{for} \quad r \in \mathbb{C}.
\]
Using this and the fact that F is linear to show F is unitary provided
$$[F(h), F(h')] = [h, h']$$
whenever $h = v_i \otimes w_j$ and $h' = v_{i'} \otimes w_{j'}$ for some pairs (i, j) and (i', j') of subscripts. Prove that in this case $[F(h), F(h')] = [h, h'] = 0$ if $j \neq j'$. Suppose now that $j = j'$. Then show that $[F(h), F(h')] = (f(v_i), f(v_{i'}))$ when $h = v_i \otimes w_j$ and $h' = v_i \otimes w_j$, where (\cdot, \cdot) is the complex inner product on \mathbb{C}^n.

An Example: Suppose $n = 2$ and $m = 2$. Then $\mathbb{C}^n \otimes \mathbb{C}^m = \mathbb{C}^2 \otimes \mathbb{C}^2$ has basis
$$\{v_1 \otimes w_1, v_2 \otimes w_1, v_1 \otimes w_2, v_2 \otimes w_2\}.$$
If θ is a real number, we can define a \mathbb{C}-linear transformation
$$f : \mathbb{C}^n \to \mathbb{C}^n$$
by saying that
$$f(v_1) = \cos(\theta) \cdot v_1 + \sin(\theta) \cdot v_2$$
$$f(v_2) = -\sin(\theta) \cdot v_1 + \cos(\theta) \cdot v_2$$
$$f(a_1 v_1 + a_2 v_2) = a_1 f(v_1) + a_2 f(v_2).$$
To check that this is unitary, we use the usual complex inner product on \mathbb{C}^n given by
$$\langle a_1 v_1 + a_2 v_2, b_1 v_1 + b_2 v_2 \rangle = a_1 \overline{b_1} + a_2 \overline{b_2}.$$
Notice that this inner product has the properties that
$$\langle v_1, v_1 \rangle = \langle v_2, v_2 \rangle = 1 \quad \text{and} \quad \langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle = 0.$$
To show f is unitary, we have to prove that for all $z, z' \in \mathbb{C}^2$ one has
$$\langle f(z), f(z') \rangle = \langle z, z' \rangle. \quad (1.2)$$
Since $f(z)$ is linear in z, and the inner product $\langle z, z' \rangle$ is linear in each of the variables z and z' separately, its enough to check (1.3) when $z = v_i$ and $z' = v_j$ for some i and j. One can check this case using (1.2) and the fact that $\cos(\theta)^2 + \sin(\theta)^2 = 1$. Now the transformation
$$F : \mathbb{C}^n \otimes \mathbb{C}^m \to \mathbb{C}^n \otimes \mathbb{C}^m$$
is the one which has
$$F(v_1 \otimes w_j) = (\cos(\theta) \cdot v_1 + \sin(\theta) \cdot v_2) \otimes w_j = \cos(\theta) \cdot (v_1 \otimes w_j) + \sin(\theta) \cdot (v_2 \otimes w_j)$$
and
$$F(v_2 \otimes w_j) = (-\sin(\theta) \cdot v_1 + \cos(\theta) \cdot v_2) \otimes w_j = -\sin(\theta) \cdot (v_1 \otimes w_j) + \cos(\theta) \cdot (v_2 \otimes w_j)$$
for $j = 1, 2$.

2. Fourier analysis on finite abelian groups

These problems are relevant to the project about multiplying numbers using the discrete Fourier transform. Suppose G is a finite abelian group. The character group \hat{G} is the set whose elements are all group homomorphisms $f : G \to \mathbb{C}^*$, where $\mathbb{C}^* = \mathbb{C} - \{0\}$ is the multiplicative group of all non-zero complex numbers. We will focus on the case in which $n \geq 1$ is an integer and $G = \{1, \omega, \omega^2, \ldots, \omega^{n-1}\}$ is the cyclic group of order n generated by the n^{th} root of unity $\omega = e^{2\pi i/n}$.

4. Show that for each integer m there is an element $e_m \in \hat{G}$ defined by $e_m(\omega^j) = \omega^{jm}$ for all integers j. Show that every element of \hat{G} equals e_m for some m, and that $e_m = e_{m'}$ if and only if $m \equiv m' \mod n$. Finally, show that the map $\mathbb{Z}/n \to \hat{G}$ defined by $[m] \to e_m$ is an isomorphism of groups, where $[m] = m \mod n$.

5. Let $C(G)$ be the set of all functions $f : G \to \mathbb{C}$. Define an inner product $\langle \ , \ \rangle : C(G) \times C(G) \to \mathbb{C}$ by $\langle f, h \rangle = \sum_{g \in G} f(g)\overline{h(g)}$.

The Fourier transform $\hat{f} : \hat{G} \to \mathbb{C}$ of a function $f : G \to \mathbb{C}$ is defined by $\hat{f}(e_m) = \frac{1}{n} \langle f, e_m \rangle$ for $m = 0, \ldots, n-1$, where $\hat{G} = \{e_0, e_1, \ldots, e_{m-1}\}$ by problem 4. Show that each function $f \in C(G)$ can be written as the particular linear combination $f = \sum_{m=0}^{n-1} \hat{f}(e_m) \cdot e_m$ of the functions e_m.

Hints: You are trying to show that for each element ω^j of G, the value $f(\omega^j)$ of f at ω^j equals the sum

$$\sum_{m=0}^{n-1} \hat{f}(e_m) \cdot e_m(\omega^j) = \sum_{m=0}^{n-1} \left(\frac{1}{n} \sum_{\ell=0}^{n-1} f(\omega^\ell) \overline{e_m(\omega^\ell)} \right) \cdot e_m(\omega^j).$$

To simplify the result of writing this out, first prove using geometric series that

$$\sum_{m=0}^{n-1} \omega^{m(j-\ell)} = 0 \quad \text{if} \quad 0 \leq j, \ell \leq n-1 \quad \text{and} \quad i \neq j$$

and

$$\sum_{m=0}^{n-1} \omega^{m(j-\ell)} = n \quad \text{if} \quad j = \ell$$