1. The central limit theorem

In class we talked about the central limit theorem for \(n \geq 1 \) independent random variables \(X_1, \ldots, X_n \) having the same distribution function. Let \(\mu = E(X_i) \) and \(\sigma = \sigma(X_i) = \sqrt{\text{Var}(X_i)} \) be the mean and standard deviation of each of the \(X_i \). Define

\[
Y_n = \frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}.
\]

The central limit theorem, with Berry’s error term, says

\[
|\Pr(Y_n \leq x) - \int_{-\infty}^{x} \phi(u) du| \leq \frac{3\rho}{\sigma^3 \sqrt{n}}
\]

when \(\rho = E(|X_i - \mu|^3) \), where \(\phi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \) is the probability density function of the normal distribution.

1. The newspaper columnist Marilyn Vos Savant often claimed that she had an I. Q. of 220, which would be 8 standard deviations above the mean. Suppose that the I.Q. test supporting this had \(n \) questions. Suppose that scores of people taking the test on questions 1 through \(n \) are represented by independent random variables \(X_1, \ldots, X_n \), with Prob\((X_i = 1) = 1/2\) being the probability of a correct answer and Prob\((X_i = 0) = 1/2\) being the probability of a wrong answer. What is the smallest number \(n \) of questions on the exam such that Marilyn Vos Savant’s total score \(X = X_1 + \cdots + X_n \) could have been 8 standard deviations above the mean? (Hint: You don’t need to use the central limit theorem for this, just the formula for \(\sigma(X) \).)

2. When \(n \) is your answer to question 1, what is the probability that a person has the same score on the exam as Marilyn Vos Savant? If the population of the earth is \(6 \cdot 10^9 \), what is the probability of finding a person with this high a score on earth, given that the exam could be modeled as in problem #1? How would you explain your conclusions?

3. Suppose we now want to use the central limit theorem to approximate the probability found in question #2. Let \(x = 8 \) in (1.1). How large should we make \(n \) in order for to make the error term on the right hand side of (1.1) less than the probability you found in question #2 of a person having a score equal to Marilyn Vos Savant’s? (This \(n \) will be considerably larger than the answer you find in question #1.)

Comment: This is another illustration of how the known error estimates for the central limit theorem do not work well at large distances from the mean unless \(n \) is exceedingly large.
2. Stirling’s formula

One form of Stirling’s formula is that if \(n \geq 1 \) is an integer, then

\[
(2.2) \quad n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\lambda_n}
\]

where

\[
(2.3) \quad \frac{1}{12n+1} < \lambda_n < \frac{1}{12n}
\]

4. Use Stirling’s formula to show that the probability of getting exactly \(n/2 \) heads on flipping a fair coin an even number \(n \) of times is equal to

\[
(2.4) \quad \sqrt{\frac{2}{n\pi}} e^{s_n}
\]

where

\[
\frac{1}{12n+1} - \frac{1}{3n} < s_n < \frac{1}{12n} - \frac{2}{6n+1}.
\]

(This corrects a formula we talked about in class.)