MATH 210, PROBLEM SET 5

DUE BY E-MAIL TO HAO ZHANG BY 5 P.M. APRIL 14.

Email of Hao Zhang: zhangphy@sas.upenn.edu

1. Minimizing covid-19 tests

This problem is a variation on Example 5.2.7 in deGroot's book. Suppose that we would like to test some large number N of members of a population for covid-19. The idea is that if the probability p that a person has the disease is small, one can usually find out which of a group of N people have the disease using considerably less than N tests. This is highly relevant at the present time, in view of the shortage of test kits. In fact, this method is just now coming into use against covid-19: see

```
https://youtu.be/vxs11ryS9Dg
```

Suppose that the probability that a person chosen at random will have covid-19 is some number p, where $0 \leq p \leq 1$. Let S be the set of all ways one can choose an ordered list of N people from the population. For $i=1, \ldots, N$, let

$$
X_{i}: S \rightarrow\{0,1\}
$$

be the Bernoulli random variable which for a given $s=\left(s_{1}, \ldots, s_{N}\right)$ returns $X_{i}(s)=1$ if s_{i} has covid-19 and returns $X_{i}(s)=0$ if s_{i} does not have covid-19. We'll assume that the X_{i} are independent random variables, each with density function

$$
f_{X_{i}}=f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { defined by } \quad f(1)=p \quad \text { and } \quad f(0)=1-p .
$$

The naive way to find which elements of the list represented by s have covid-19 is to evaluate $X_{i}(s)$ for $i=1, \ldots, N$. In other words, one tests every person on the list individually, requiring N tests. Here is a more efficient method when p is small.

1. Fix an integer $m \geq 1$ which we will assume divides N. We divide $\{1, \ldots, N\}$ into N / m disjoint subsets A_{j} of size m, where $j=1, \ldots, N / m$. Explain why $Z_{j}=\sum_{i \in A_{j}} X_{i}$ is a random variable $Z_{j}: S \rightarrow \mathbb{R}$ which represents the number of people $\left\{s_{i}: i \in A_{j}\right\}$ which have covid-19.
2. Explain why Z_{j} is a binomial random variable with parameter m and p. In other words,

$$
\operatorname{Prob}\left(Z_{j}=k\right)=\binom{m}{k} p^{k}(1-p)^{m-k} \quad \text { for } \quad 0 \leq k \leq m
$$

3. Explain why we can determine whether $Z_{j}(s)>0$ for a given $s=\left(s_{1}, \ldots, s_{N}\right) \in S$ with just one test by combining samples taken from the $s_{i} \in A_{j}$ into one sample and then testing this sample. Show that the random variable Y_{j} defined by $Y_{j}(s)=1$ if $Z_{j}(s)>0$ and $Y_{j}(s)=0$ if $Z_{j}(s)=0$ is a Bernoulli random variable with parameter $1-(1-p)^{m}$. In other words, show

$$
\operatorname{Prob}\left(Y_{j}=0\right)=(1-p)^{m} \quad \text { and } \quad \operatorname{Prob}\left(Y_{j}=1\right)=1-(1-p)^{m}
$$

4. Show that $Y=\sum_{j=1}^{N / m} Y_{j}$ is the random variable defined by letting $Y(s)$ for $s=$ $\left(s_{1}, \ldots, s_{N}\right)$ be the number of A_{j} such that some $s_{i} \in A_{j}$ tests positive for covid-19. For each j such that $Y_{j}(s)=1$, we go ahead and test all $s_{i} \in A_{j}$ for covid-19. Explain why this amounts to doing $m \cdot Y(s)$ tests in addition to the N / m tests needed to determine $Y_{1}(s), \ldots, Y_{N / m}(s)$. Show that the expected number of tests is then

$$
N / m+m E(Y)=N / m+m \sum_{j=1}^{N / m} E\left(Y_{j}\right)=N \cdot\left(1 / m+1-(1-p)^{m}\right)
$$

Deduce from this that if there is a divisor m of N such that $1 / m<(1-p)^{m}$, then the expected number of tests needed to determine which people represented by a given $s=\left(s_{1}, \ldots, s_{N}\right)$ are sick is less than N.
(Comment: In example 5.2.7 of de Groot's book, he takes $p=0.002, N=1000$ and $m=100$. Then $N \cdot\left(1 / m+1-(1-p)^{m}\right)=191$ is considerably less than $N=1000$.)
5. Suppose $m^{2} \geq N$. Show that for a given $s=\left(s_{1}, \ldots, s_{N}\right)$, the only way that the above procedure can require more than N tests in order to find all of the s_{i} which have covid-19 is for $Y_{j}(s)$ to be 1 for $j=1, \ldots, N / m$. What is the probability more than N tests will be needed as a function of N, m and p ?
Extra Credit: What can you say about real numbers $m>0$ where the function

$$
N \cdot\left(1 / m+1-(1-p)^{m}\right)
$$

has a local minimum? Can you use this and Wolfram alpha to do better than 191 for the expected number of tests needed to treat the case in which $N=1000$ and $p=0.002$? Here you may need to make an adjustment of the method to allow m to not be a divisor of N.

