NOTES ON AUTONOMOUS ORDINARY DIFFERENTIAL EQUATIONS

APRIL 2013

These notes give a quick summary of the part of the theory of autonomous ordinary differential equations relevant to modeling zombie epidemics.

1. AUTONOMOUS LINEAR DIFFERENTIAL EQUATIONS, EQUILIBRIA AND STABILITY

Suppose that \(n \geq 1 \). We are going to later multiply vectors of length \(n \) on the left by square matrices. So we will consider vectors of length \(n \) to be column vectors

\[
x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.
\]

This will lessen the need to take transposes of row vectors as in the lectures in class.

Let \(G : \mathbb{R}^n \to \mathbb{R}^n \) is a continuously differentiable vector valued function. Thus \(G \) assigns to each \(x \in \mathbb{R}^n \) a vector

\[
G(x) = \begin{pmatrix} G_1(x) \\ G_2(x) \\ \vdots \\ G_n(x) \end{pmatrix}
\]

and all the partial derivatives \(\frac{\partial G_i}{\partial x_j} \) are continuous functions of \(x \).

Definition 1.1. An autonomous ordinary differential equation for a function \(f : \mathbb{R} \to \mathbb{R}^n \) has the form

\[
\frac{df}{dt}(t) = G(f(t)) \quad \text{and} \quad f(0) = x
\]

in which \(f : \mathbb{R} \to \mathbb{R}^n \) is a function and \(x \) is an initial value for \(f \). Here

\[
f(t) = \begin{pmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{pmatrix}
\]

for some functions \(f_1, \ldots, f_n \) from \(\mathbb{R} \) to \(\mathbb{R} \) and

\[
\frac{df}{dt}(t) = \begin{pmatrix} \frac{df_1}{dt}(t) \\ \frac{df_2}{dt}(t) \\ \vdots \\ \frac{df_n}{dt}(t) \end{pmatrix}.
\]
The differential equation (1.1) is called autonomous because \(\frac{df}{dt} \) depends only on what \(f(t) \) is rather than depending on both \(f(t) \) and the independent variable \(t \). If one thinks of \(t \) as time and \(f(t) \) as the state of a system at time \(t \), then the rate of change \(\frac{df}{dt} \) of the system depends only on its state \(f(t) \) at time \(t \), not on what time it is.

Definition 1.2. The initial value \(x \) gives an equilibrium solution if \(f(t) = x \) for all \(t \) is a solution of the differential equation (1.1).

The following result is easy:

Lemma 1.3. The vector \(x \) gives an equilibrium solution \(f(t) = x \) for all \(t \) if and only if \(G(x) \) is the zero vector \(\mathbf{0} = (0, \ldots, 0) \) transpose.

Proof. If \(f(t) = x \) for all \(t \) is a solution to the differential equation, we have

\[
\frac{df}{dt}(t) = 0 = G(f(t)) = G(x)
\]

for all \(t \).

Conversely, if \(G(x) = \mathbf{0} \), and we let \(f(t) = x \) for all \(t \), then (1.2) holds, so \(f(t) \) solves the differential equation. \(\square \)

Definition 1.4. An equilibrium solution \(f(t) = x \) for all \(t \) is stable if there an \(\epsilon > 0 \) such that the following is true for all \(\tilde{x} \in \mathbb{R}^n \) such that distance(\(x, \tilde{x} \)) < \(\epsilon \). Suppose \(\tilde{f}(x) \) is a solution of the differential equation

\[
\frac{d\tilde{f}}{dt}(t) = G(\tilde{f}(t))
\]

with initial condition \(\tilde{f}(0) = \tilde{x} \). Then

\[
\lim_{t \to +\infty} \tilde{f}(t) = x.
\]

2. Linearizing the Differential Equation, and Linear Stability

To study stability near an equilibrium \(x \), we use the Taylor expansion of \(G(\tilde{x}) \) for \(\tilde{x} \) near \(x \). The Taylor expansion is

\[
G(\tilde{x}) = G(x) + \text{Jac}(G)(x) \cdot (\tilde{x} - x) + \text{higher order terms}.
\]

Here \(\text{Jac}(G) \) is the \(n \times n \) matrix

\[
\left(\frac{\partial G_i}{\partial x_j} \right)_{1 \leq i,j \leq n}
\]

and \(\text{Jac}(G)(x) \) is the matrix of constants which results from evaluating at \(x \) all the partial derivatives which are the entries of \(\text{Jac}(G) \). The higher order terms in the expansion go to 0 more rapidly than any linear function of \(\tilde{x} - x \) and \(\tilde{x} \) tends toward \(x \).

If \(\tilde{f}(t) \) were a solution of the differential equation such that \(\tilde{f}(t) \) is always close to \(x \), then since \(G(x) = \mathbf{0} \) for an equilibrium value of \(x \), we would have

\[
G(\tilde{f}(t)) = \text{Jac}(G)(x) \cdot (\tilde{f}(t) - x) + \text{smaller order error}.
\]

We use the first term on the right side of this expression to get a linear approximation to our original differential equation:
Definition 2.1. The linear approximation to the differential equation \(\frac{df}{dt}(t) = G(\tilde{f}(t)) \) near an equilibrium value \(x \) is
\[
(2.3) \quad \frac{df}{dt}(t) = A \cdot (\tilde{f}(t) - x)
\]
When \(A \) is the constant \(n \times n \) matrix \(A = \text{Jac}(G)(x) \).

Lemma 2.2. Let \(x \) be an equilibrium solution of (2.3). Then \(x \) is a stable equilibrium for (2.3) if and only if every solution \(y(t) \) of the differential equation
\[
(2.4) \quad \frac{dy}{dt}(t) = Ay(t)
\]
has the property that \(\lim_{t \to +\infty} y(t) = 0 = (0, \ldots, 0)^{\text{transpose}} \), where \(A = \text{Jac}(G)(x) \).

Proof. Suppose first that all \(y(t) \) as in the Lemma have \(\lim_{t \to +\infty} y(t) = 0 \). By definition, \(x \) is a stable equilibrium solution of (2.3) if and only for all \(\tilde{f}(t) \) for which (2.3) holds and \(\tilde{f}(0) = \tilde{x} \) is sufficiently close to \(x \), we have \(\lim_{t \to +\infty} \tilde{f}(t) = x \). Set \(y(t) = \tilde{f}(t) - x \). Then \(\frac{dy}{dt} = \frac{df}{dt} \), so \(y(t) \) is a solution of (2.4). Thus
\[
\lim_{t \to +\infty} \tilde{f}(t) = \lim_{t \to +\infty} (y(t) + x) = 0 + x = x
\]
and (2.3) has \(x \) as a stable equilibrium solution.

Conversely, suppose that \(x \) is a stable equilibrium solution to (2.3), and that \(y(t) \) is a solution of (2.4). By definition, this means that there is an \(\epsilon > 0 \) such that if distance \((x, \tilde{x}) < \epsilon\), then every solution \(\tilde{f} \) of (2.3) such that \(\tilde{f}(0) = \tilde{x} \) has the property that
\[
\lim_{t \to +\infty} \tilde{f}(t) = x.
\]
We can find a real constant \(c > 0 \) such that distance \((0, c \cdot y(0)) < \epsilon\). Since \(y(t) \) is a solution of (2.4), we find that \(\tilde{f}(t) = x + c \cdot y(t) \) is a solution of (2.3) since
\[
\frac{d\tilde{f}}{dt}(t) = c \cdot \frac{dy}{dt}(t) = c \cdot Ay(t) = Ac \cdot y(t) = A(\tilde{f}(t) - x).
\]
We have
\[
\text{distance}(\tilde{f}(0), x) = \text{distance}(x + c \cdot y(0), x) = \text{distance}(cy(0), 0) < \epsilon.
\]
Therefore \(\lim_{t \to +\infty} \tilde{f}(t) = x \) since \(x \) is a stable equilibrium, so
\[
\lim_{t \to +\infty} y(t) = \lim_{t \to +\infty} (\tilde{f}(t) - x)/c = 0.
\]
\(\square \)

Definition 2.3. Let \(x \) be an equilibrium solution of the original differential equation (1.1). We will say that \(x \) is a linearly stable equilibrium if the linearized differential equation (2.1) has \(x \) as a stable solution. By Lemma 2.2, this is equivalent to requiring that \(\lim_{t \to +\infty} y(t) = 0 \) for all solutions \(y(t) \) to
\[
\frac{dy}{dt}(t) = Ay(t)
\]
when \(A = \text{Jac}(G)(x) \).
3. Solutions of linear systems

Suppose A is an $n \times n$ matrix of complex numbers.

Theorem 3.1. The series of $n \times n$ matrices

$$e^A = \sum_{m=0}^{\infty} \frac{(At)^m}{m!}$$

converges for all values of t to an $n \times n$ matrix of complex numbers. The unique solution $y : \mathbb{R} \to \mathbb{R}^n$ of the differential equation

$$(3.5) \quad \frac{dy}{dt}(t) = Ay(t) \quad \text{and} \quad y(0) = w$$

is

$$y(t) = e^{At}w.$$

This result does take some time to prove rigorously, so I will not include a proof. The appearance of e^{At} is justified by the following formal computation:

$$\frac{d}{dt} e^{At}w = \frac{d}{dt} \sum_{m=0}^{\infty} \frac{A^m t^m}{m!}w$$

$$= \sum_{m=0}^{\infty} \frac{d}{dt} \frac{A^m t^m}{m!}w$$

$$= \sum_{m=1}^{\infty} \frac{A^m m t^{m-1}}{m!}w$$

$$= \sum_{m=1}^{\infty} A^{m-1} \frac{t^{m-1}}{(m-1)!}w$$

$$= Ae^{At}w.$$

$$(3.6)$$

The following result is proved in linear algebra courses.

Theorem 3.2. There is an invertible $n \times n$ matrix B such that $C = BAB^{-1}$ has the upper triangular form

$$C = \begin{pmatrix}
\lambda_1 & c_{1,2} & c_{1,3} & \cdots & c_{1,n} \\
0 & \lambda_2 & c_{2,3} & \cdots & c_{2,n} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_3 & \cdots & c_{3,n} \\
0 & 0 & 0 & 0 & \cdots & \lambda_n
\end{pmatrix}$$

$$(3.7)$$

for some complex numbers $\lambda_1, \cdots, \lambda_n$ and $c_{i,j}$ with $i < j$. The entries below the diagonal of C are all 0. The numbers λ_i for $1 \leq i \leq n$ may not all be distinct, and are called the eigenvalues of A. These λ_i are the roots (counting multiplicities) of the characteristic polynomial

$$c_A(T) = \det(T \cdot I_n - A)$$

where T is an indeterminate and I_n is the $n \times n$ identity matrix.

Observe now that if $m \geq 0$, then

$$C^m = (BAB^{-1}) = (BAB^{-1}) \cdot (BAB^{-1}) \cdots (BAB^{-1}) = BA^m B^{-1}$$
since we can group terms in the product to take advantage of the fact that \(BB^{-1} = I_n\). Thus we get

\[
Be^{At}B^{-1} = B \left(\sum_{m=0}^{\infty} \frac{(At)^m}{m!} \right) B^{-1}
\]

\[
= \sum_{m=0}^{\infty} \frac{BA^m B^{-1} t^m}{m!}
\]

\[
= \sum_{m=0}^{\infty} \frac{C^m t^m}{m!}
\]

(3.8)

Since \(C\) in (3.7) is upper triangular, the matrix \(C^m\) is also upper triangular, with diagonal terms given by \(\lambda_1^m, \ldots, \lambda_n^m\). Thus

\[
e^{Ct} = \sum_{m=0}^{\infty} \frac{C^m t^m}{m!}
\]

\[
= \begin{pmatrix}
\sum_{m=0}^{\infty} \frac{\lambda_1^m t^m}{m!} & \ast & \ast & \cdots & \ast \\
0 & \sum_{m=0}^{\infty} \frac{\lambda_2^m t^m}{m!} & \ast & \cdots & \ast \\
0 & 0 & \sum_{m=0}^{\infty} \frac{\lambda_3^m t^m}{m!} & \cdots & \ast \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \sum_{m=0}^{\infty} \frac{\lambda_n^m t^m}{m!}
\end{pmatrix}
\]

(3.9)

where we don’t need to calculate the entries above the diagonal.

Suppose now that \(x\) is a linearly stable equilibrium solution of the original differential equation (1.1) in the sense of Definition 2.3. Let \(A = \text{Jac}(G)(x)\). Then for all initial values \(y(0) = w\) of the differential equation

\[
\frac{dy}{dt}(t) = Ay(t)
\]

we should have \(\lim_{t \to +\infty} y(t) = 0\). By Theorem 3.1, this is equivalent to

\[
\lim_{t \to +\infty} e^{At}w = 0.
\]

Taking \(w\) to range over the vectors which have exactly one component equal to 1 and all the others equal to 0, we would be able to conclude that

\[
\lim_{t \to +\infty} e^{At} = \text{the zero matrix}.
\]

Then (3.8) would give

\[
\lim_{t \to +\infty} e^{Ct} = B \left(\lim_{t \to +\infty} e^{At} \right) B^{-1} = \text{the zero matrix}.
\]
But now (3.9) would show

\[(3.10) \quad \lim_{t \to +\infty} e^{\lambda_i t} = 0\]

for \(i = 1, \ldots, n\). Here if \(\lambda_i = a_i + b_i \sqrt{-1}\) we have

\[e^{\lambda_i t} = e^{a_i t}(\cos(b_i t) + \sqrt{-1}\sin(b_i t)).\]

So (3.10) is equivalent to

\[(3.11) \quad \text{Re}(\lambda_i) = a_i < 0 \quad \text{for} \quad i = 1, \ldots, n.\]

With a little more work, which I won’t include, one can show that (3.11) is also sufficient for linear stability:

Theorem 3.3. The differential equation (1.1) is linearly stable at an equilibrium \(x\) if and only if the eigenvalues \(\lambda_1, \ldots, \lambda_n\) of the Jacobian matrix \(A = \text{Jac}(G)(x)\) at \(x\) have all negative real parts.