
JORDAN CANONICAL FORMS

OCT. 2019

1. Characteristic polynomials, eigenvalues and eigenvectors

Suppose that n ≥ 1 and that T : Cn → Cn is a linear transformation. Let

S =




1
0
· · ·
0

 ,


0
1
· · ·
0

 , · · · ,


0
0
· · ·
1




be the standard basis for Cn. Then T has a matrix

[T ]SS = M =


a1,1 a1,2 a1,3 · · · a1,n
a2,1 a2,2 a2,3 · · · a2,n
a3,1 a3,2 a3,3 · · · a3,n
· · · · · · · · · · · · · · ·
an,1 an,2 an,3 · · · an,n

 .

relative to the basis S.

Definition 1.1. The characteristic polynomial of T (and of M) is
(1.1)

pT (z) = pM (z) = det(z·In−M) = det


(z − a1,1) −a1,2 −a1,3 · · · −a1,n
−a2,1 (z − a2,2) −a2,3 · · · −a2,n
−a3,1 −a3,2 (z − a3,3) · · · −a3,n
· · · · · · · · · · · · · · ·
−an,1 −an,2 −an,3 · · · (z − an,n)


when In is the n× n identity matrix.

Keep in mind that this is (−1)n times the definition in the course text. The above
definition is the usual one. It has the advantage of making the highest degree term of pT (z)
equal to zn rather than (−1)nzn.

Because pT (z) has coefficients in C, we can factor it as

(1.2) pT (z) =

d∏
i=1

(z − λi)n(i)

for some distinct roots λ1, . . . , λd in C and some integers n(i) ≥ 1 such that

(1.3)
d∑

i=1

n(i) = n = degree(pT (z))

For each i = 1, . . . , d, let

Mi = M − λi · In = −(λi · In −M)

1
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The significance of the characteristic polynomial pT (z) in 1.1 is that substituting λi for z
leads to

(1.4) pT (λi) = det(λi · In −M) = (−1)ndet(M − λi · In) = (−1)ndet(Mi) = 0

because the factor (z − λi)
n(i) on the right in (1.2) is 0 when z = λi. The fact that

det(Mi) = 0 means that Mi has rank less than n, so the null space Null(Mi) is not 0. Here
the following conditions are equivalent:

i. 0 6= b(i) ∈ Null(Mi) where 0 is the zero vector.
ii. Mib(i) = Mb(i)− λib(i) = 0 6= b(i).
iii. Mb(i) = λib(i) and b(i) 6= 0.

The last condition is the basis for the following definition:

Definition 1.2. An eigenvector with eigenvalue λi ∈ C is a non-zero vector b(i) such that
T (b(i)) = λib(i) = Mb(i).

Theorem 1.3. A complex number λ is an eigenvalue of some eigenvector for for M if and
only if λ is one of the roots λi of pM (t). Suppose {b(i)}di=1 is any set of (non-zero) eigen-
vectors with distinct eigenvalues {λi}di=1. Then {b(i)}di=1 is a set of independent vectors.

Proof. The first statement follows from the fact that λ is an eigenvalue of M if and only if
λ · In−M has a non-zero null space, and this is true if and only if pM (λ) = det(λ · In−M)
equals 0. Now let the b(i) be as in the Theorem. Suppose to the contrary that {b(i)}di=1 is
dependent. Then there is some non-trivial linear dependency relation among them. There
will be such a dependency relation that involves a minimal number of elements of {b(i)}di=1.
After reordering the b(i), we can assume that this dependency relation has the form

∑̀
i=1

cib(i) = 0

for some ` ≤ d with all c1, . . . , c` not 0. We have to have ` > 1 since b(1) 6= 0 and c1 6= 0.
Now

M(
∑̀
i=1

cib(i)) =
∑̀
i=1

M(cib(i)) =
∑̀
i=1

ciλib(i).

Therefore

0 = λ`(
∑̀
i=1

cib(i))−M(
∑̀
i=1

cib(i))

= (
∑̀
i=1

ciλ`b(i))−
∑̀
i=1

ciλib(i)

=
`−1∑
i=1

ci(λ` − λi)b(i)(1.5)

since the last terms in the sums in the second row cancel one another. But λ` − λi 6= 0
for i < ` since λ1, . . . , λ` are distinct. This shows (1.5) is a shorter non-trivial dependency
relation, which is a contradiction. This means the original hypothesis that {b(i)}di=1 is not
a set of independent vectors must have been false. �
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2. The “non-defective” case

The text defines M to be non-defective if Cn has a basis of eigenvectors for M . We can
say exactly when this occurs:

Theorem 2.1. Let M be an n× n matrix with complex entries.

i. The matrix M is non-defective if and only if for each eigenvalue λi, the dimension
of the null space Null(Mi) of Mi = M − λi · In equals the multiplicity n(i) of λi as

a root of pM (t) =
∏d

i=1(t− λi)n(i).
ii. If M is not defective, a basis B of eigenvectors for M is given by ∪di=1Bi when Bi

is a basis for Null(Mi). The transition matrix P = PS←B has columns the vectors
of B in the standard basis. The matrix P−1MP is diagonal, with diagonal entries
the eigenvalues of B.

iii. If d = n, so thatM has n distinct eigenvalues, thenM is not defective, and Null(Mi)
has dimension 1 for all i.

Proof. The elements of Null(Mi) are just the eigenvectors of M with eigenvalue λi. Suppose
first that Null(Mi) has dimension n(i) for all i. Let Bi be a basis for Null(Mi). Let’s check
that B = ∪di=1Bi is independent. Recall that any linear combination of elements of Bi is
an eigenvector for M with eigenvalue λi, and a set of non-zero eigenvectors with different
eigenvalues is independent. Suppose some linear combination with non-zero coefficients of
the elements of B is 0. We can write this combination in the form

d∑
i=1

(

mi∑
j=1

ri,jbi,j) =
d∑

i=1

bi = 0

where bi,j ∈ Bi for all i, some of the ri,j ∈ C are not zero, and bi =
∑mi

j=1 ri,jbi,j is either 0
or an eigenvector with eigenvalue λi. Since eigenvectors associated to different eigenvalues
are linearly independent, we conclude that all of the bi must be 0. But then since some of
the ri,j are not 0, this contradicts each Bi being independent sets of vectors. If Null(Mi)

has dimension n(i), then Bi has n(i) elements and B has
∑d

i=1 n(i) = n elements. This
forces B to be a basis of eigenvectors for Cn.

Conversely, suppose there is a basis B of Cn of eigenvectors for M . We have shown that
the eigenvalue of any eigenvector must be one of λ1, . . . , λd. Let m(i) be the number of
elements of B which have eigenvalue λi. The matrix of the linear tranformation T defined
by M in the standard basis has the property that M ′ = [T ]BB is a diagonal matrix, with
diagonal entries given by the eigenvalues of B. Therefore

d∏
i=1

(t− λi)n(i) = pM (t) = pM ′(t) =
d∏

i=1

(t− λi)m(i).

This forces m(i) = n(i), so B ∩Null(Mi) = Bi has m(i) = n(i) elements for all i. Here

n(i) = #Bi ≤ dim(Null(Mi))

since the Bi are independent. Because eigenvectors associated to different eigenvalues are
independent, we get

d∑
i=1

dim(Null(Mi)) ≤ dim(Cn) = n.
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Putting all of this together shows

n =
d∑

i=1

n(i) ≤
d∑

i=1

dim(Null(Mi)) ≤ n.

The only say this is possible is for m(i) = n(i) = dim(Null(Mi)) for all i
Finally, suppose n = d, so that M has distinct eigenvalues. Since Mi has determinant

0, dim(Null(Mi)) ≥ 1. Let B be a set consisting of one non-zero element of Null(Mi) for
i = 1, . . . , d. Since d = n, B is an independent set of size n, so B is a basis of Cn and M
is not defective. �

3. A consequence to computing powers of M

Suppose that as in Theorem 2.1, M is not defective. Let B = {b(1), . . . , b(n)} be a basis
of Cn consisting of eigenvectors for M , and let λ(i) be the eigenvalue of b(i). Note that
we could have λ(i) = λ(j) for some i 6= j since some eigenvalues may be repeated roots of
pM (t). We can easily compute the powers M ` of M for integers ` ≥ 1. One has

[T `]BB = ([T ]BB)` =


λ(1)` 0 0 · · · 0

0 λ(2)` 0 · · · 0
0 0 λ(3)` · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · λ(n)`

 .

so

M ` = ([T ]SS)` = [T `]SS = P ·


λ(1)` 0 0 · · · 0

0 λ(2)` 0 · · · 0
0 0 λ(3)` · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · λ(n)`

·P−1 when P = PS←B.

One can interpret this result in the following way. Each v ∈ Cn is a unique linear
combination

v = c1b(1) + c2b(2) + · · ·+ cnb(n)

of the elements of B. One has

T `(v) = c1λ(1)`b(1) + c2λ(2)`b(2) + · · ·+ cnλ(n)`b(n).

4. The general case

Suppose now that T has characteristic polynomial

pT (z) =

d∏
i=1

(z − λi)n(i)

with d ≤ n and n(i) ≥ 1. We first need to define generalized eigenvectors.

Definition 4.1. A vector b(i) ∈ Cn is a generalized eigenvector with eigenvalue λi and
multiplicity m ≥ 1 if (M − λiIn)mb(i) = 0 but (M − λiIn)m−1b(i) 6= 0.

Lemma 4.2. Suppose b(i) is a generalized eigenvector with eigenvalue λi and multiplicity
m ≥ 1. Write Mi = M − λiIn as before. Then the C vector space W spanned by

{Mm−1
i b(i),Mm−2

i b(i), · · · , b(i)} = {d1, d2, . . . , dm} = D
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has dimension m. The action of T takes W back itself. The matrix of T acting on W
relative to the basis D is the m×m Jordan block matrix

(4.6) [T|W ]DD = J(m,λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · λ


which has λ down the diagonal and 1 just above the diagonal.

Proof. Suppose D is not independent. Then there is some linear dependency relation

(4.7) c0b(i) + c1Mib(i) + · · · cm−1Mm−1
i b(i) = 0

in which not all of the cj are 0. Suppose that J is the smallest integer such that cJ 6= 0.

Then Mm−J−1
i MJ

i b(i) = Mm−1
i b(i) 6= 0. However, if j > J , then m − J − 1 + j ≥ m, so

Mm−J−1
i M j

i b(i) = 0 because Mm
i b(i) = 0. If we apply Mm−J−1

i to both sides of (4.7) we
therefore get

Mm−J−1
i (c0b(i) + c1Mib(i) + · · · cm−1Mm−1

i b(i)) = cJM
m−1
i b(i) = 0.

But this contradicts cJ 6= 0 and Mm−1
i b(i) 6= 0. So D must have been an independent set

of vectors.
To compute the action of M on W , note that

M = Mi + λiIn.

and as above

Mm
i b(i) = 0.

Hence for d1 = Mm−1
i b(i) we get

M · d1 = (Mi + λiIn) ·Mm−1
i b(i) = Mm

i b(i) + λiM
m−1
i b(i) = λid1

since Mm
i b(i) = 0 and Mm−1

i b(i) = d1. This is consistent with the matrix (4.6) since d1
corresponds to the column vector 

1
0
· · ·
0


when we use the coordinates associated to the basis D = {d1, d2, . . . , dm} of W . We find
in a similar way that if 1 < j ≤ m then

M · dj = (Mi + λiIn) ·Mm−j
i b(i) = M

m−(j−1)
i b(i) + λiM

m−j
i b(i) = dj−1 + λidj

and this is consistent with the matrix (4.6). �

The main Theorem about Jordan canonical forms is:

Theorem 4.3. Suppose the characteristic polynomial of T is

pT (z) =

d∏
i=1

(z − λi)n(i)

in which λ1, · · · , λd are distinct complex numbers n(i) ≥ 1 for all i. There is a basis
B = ∪di=1Bi for Cn with the following properties.
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i. For each i there is an integer j(i) ≥ 1 so that

Bi = ∪j(i)j=1Bi,j

with

Bi,j = {Mn(i,j)−1
i b(i, j),Mn(i,j)−2b(i, j), . . . , b(i, j)}

for some generalized eigenvector b(i, j) with eigenvalue λi and multiplicity n(i, j) ≥
1.

ii. One has
j(i)∑
j=1

#Bi,j =

j(i)∑
j=1

n(i, j) = n(i)

iii. The matrix [T ]BB of T relative to the basis in part (i) is a block diagonal matrix with
the Jordan blocks J(n(i, j), λi) for 1 ≤ i ≤ d and 1 ≤ j ≤ j(i) running down the
diagonal and all entries not in one of these blocks equal to 0.

iv. Each Jordan block J(n(i, j), λi) produces a one dimensional space of eigenvectors
with eigenvalue λi. The null space Null(Mi) is the space spanned by these sub-
spaces and has dimension equal to the number j(i) of Jordan blocks associated to
the eigenvalue λi.

v. From the dimensions of the Null spaces Null(M `
i ) for 1 ≤ i ≤ d and 1 ≤ ` ≤ n(i) one

can determine the sizes of all the Jordan blocks of [T ]BB = P−1MP when P = PS←B.

I will not prove this, or the fact that the Jordan blocks appearing in part (ii) are unique
up to permutation. Instead I’ll first discuss how to find all possible Jordan forms associated
to a given characteristic polynomial. I’ll then discuss how to find the Jordan canonical form
of two-by-two and three-by-three matrices. In a final (optional!) section I’ll give a general
algorithm for finding a basis B of the kind in Theorem 4.3.

5. Finding all the Jordan forms which can arise from a given
characteristic polynomial.

Suppose we want to find all Jordan forms of n× n matrices which have a given charac-

teristic polynomial pM (z) =
∏d

i=1(z−λi)n(i) with λ1, . . . , λd a given set of distinct complex
numbers and n(1), . . . , n(d) a given set of positive integers whose sum is n.

If all the n(i) = 1, then the only Jordan form (up to permuting the Jordan blocks) is
the diagonal matrix with λ1, . . . , λn down the diagonal, where n = d.

For those n(i) larger than 1, we need to consider all ways of writing

n(i) =

j(i)∑
j=1

n(i, j)

with j(i) ≥ 1 and all n(i, j) ≥ 1. Suppose we make such a choice of the j(i) and the n(i, j).
Then there will be a matrix with the right characteristic polynomial which has Jordan
blocks J(n(i, j), λi) for all i and j. Reordering the blocks corresponds to permuting the
basis.

As an example, suppose n = 3 and that pT (z) = (z − 1)2(z − 2). Then d = 2, λ1 = 1
and λ2 = 2. There is a unique 1× 1 Jordan block J(1, λ2) = J(1, 2) associated to λ2 = 2,
since (z − λ2) = (z − 2) occurs to the first power in pT (z), meaning n(2) = 1. There are
two possibilities for the Jordan blocks associated to the eigenvalue λ1 = 1.
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1. We write n(1) = 2 = 1 + 1 so j(1) = 2 and n(1, 1) = n(1, 2) = 1. We get two 1× 1
Jordan blocks J(1, 1) associated to λ1 = 1.

2. We write n(1) = 2, so j(1) = 1 and n(1, 1) = 2. Then there is one 2 × 2 Jordan
block J(2, 1) associated to λ1 = 1.

The final conclusion is that up to permuting the blocks, there are only two possible Jordan
canonical forms:  1 0 0

0 1 0
0 0 2


and  1 1 0

0 1 0
0 0 2



6. Finding the Jordan canonical form of a two-by-two matrix.

In this section we fix n = 2 and describe how to find the Jordan canonical form of a two
by two matrix

M =

(
a1,1 a1,2
a2,1 a2,2

)
The characteristic polynomial is

pM (t) = det(

(
t− a1,1 −a1,2
−a2,1 t− a2,2

)
= t2 − Trace(M) t+ det(M)

where Trace(M) = a1,1 + a2,2. There are two ways a quadratic polynomial can factor

A. Suppose pM (t) = (t− λ1) · (t− λ2) for distinct roots λ1, λ2 ∈ C. In this case, M is
not defective. The space Null(Mi) = Null(M −λiI2) is one dimensional for i = 1, 2.
If we let b(i) be a basis for Null(Mi) then B = {b(1), b(2)} is a basis of eigenvectors.
If P = PS←B is the two by two matrix with columns given by the vectors b(1) and
b(2) in the standard basis, then

P−1MP =

(
λ1 0
0 λ2

)
and M = P

(
λ1 0
0 λ2

)
P−1.

B. Suppose pM (t) = (t − λ1)2 for some λ1. Then the multiplicity of λ1 as a root is
n(1) = 2 and d = 1. There are two subcases:

B1. The matrix M is non-defective if and only if dim(Null(M1)) = n(1) = 2 when
M1 = M −λ1I2. This occurs if and only if M1 is the zero matrix, in which case

M = λ1I2 =

(
λ1 0
0 λ1

)
B2. Suppose M is defective. Then it has to be the case that 1 ≤ dim(Null(M1)) <

n(1) = 2, so Null(M1) is one-dimensional. Recall that each Jordan block in the
Jordan normal form of M produces exactly one new independent eigenvector.
Since we have just one eigenvalue, and there is only a one dimensional space of
eigenvectors for this eigenvalue, there can be just one Jordan block. The sum
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of the sizes of all the Jordan blocks must be n = 2, so we see that there is just
one two-by-two Jordan block. The Jordan normal form of M is thus

M ′ =

(
λ1 1
0 λ1

)
Notice that

M ′ − λ1I2 =

(
0 1
0 0

)
has the property that (M ′ − λ1I2)2 is the zero matrix. Changing bases back
from B to the standard basis S, we see that (M−λ1I2)2 is also the zero matrix.
To find a B explicitly, let v1 is any element of C2 which is not in Null(M1).
Define v2 = M1v1 = (M − λ1I2)v1. Then v2 is an eigenvector for M with
eigenvalue λ1, since

(M − λ1I2)v2 = (M − λ1I2)2v1 = 0.

Thus

Mv2 = λ1v2.

We have

Mv1 = λ1v1 + (M − λ1I2)v1 = λ1v1 + v2.

So if we change bases from the standard basis S to B = {v2, v1}, M becomes

M ′ =

(
λ1 1
0 λ1

)
To check this recall the the vectors corresponding to v2 and v1 relative to B are

[v2]B =

(
1
0

)
and [v1]B =

(
0
1

)
.

Multiplying these vectors on the left by M ′ sends them to the images of v2
and v1, respectively, under the linear transformation T defined by M in the
standard basis.

7. Finding the Jordan canonical form of a three-by-three matrix.

In this section we fix n = 3 and describe how to find the Jordan canonical form of a
three by three matrix

M =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


The characteristic polynomial is

pM (t) = det(tI3 −M)

This is a cubic in t. It can factor in three ways.

A. Suppose pM (t) = (t−λ1) · (t−λ2) · (t−λ3) for distinct roots λ1, λ2, λ3 ∈ C. In this
case, M is not defective. The space Null(Mi) = Null(M − λiI2) is one dimensional
for i = 1, 2, 3. If we let b(i) be a basis for Null(Mi) then B = {b(1), b(2), b(3)} is a
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basis of eigenvectors. If P = PS←B is the three by three matrix with columns given
by the vectors b(1), b(2), b(3) in the standard basis, then

P−1MP =

λ1 0 0
0 λ2 0
0 0 λ3

 and M = P

λ1 0 0
0 λ2 0
0 0 λ3

P−1.

B. Suppose pM (t) = (t− λ1)2 · (t− λ2) for some λ1 6= λ2. Then the multiplicity of λ1
as a root is n(1) = 2, the multiplicity of λ2 is n(2) = 1 and d = 2. There are two
subcases:

B1. The matrix M is non-defective if and only if dim(Null(M1)) = n(1) = 2 when
M1 = M − λ1I3. In this case, we can form a basis B of eigenvectors by taking
the union of bases for Null(M1) and Null(M2) when M2 = M − λ2I3. Here
Null(M2) is one dimensional. The resulting Jordan canonical form isλ1 0 0

0 λ1 0
0 0 λ2


B2. Suppose M is defective. This occurs precisely when 1 = dim(Null(M1)) <

n(1) = 2, We have only a one-dimensional space of eigenvectors for each of the
eigenvalues λ1 and λ2. So there are exactly two Jordan blocks. These must
have sizes 2 and 1 since the sum of their sizes must be n = 3. The block of size
2 is associated to λ1 since pM (t) = (z − λ1)2 · (z − λ2) and the diagonal entries
down the Jordan normal form determine pM (t). So the Jordan normal form isλ1 1 0

0 λ1 0
0 0 λ2


A basis B which leads to this Jordan normal form for M can be found using
the algorithm in the optional section below. This specializes in this case to the
following. Let v1 be any element of the Null(M2

1 ) which is not in Null(M1).
Let v2 = M1v1. We can take B = {v2, v1, v3} when v3 is any eigenvector for λ2.

C. Suppose pM (t) = (t− λ1)2. Then n(1) = 3 and d = 1. There are these subcases:
C1. M is non-defective if and only if dim(Null(M1)) = 3 when M1 = M − λ1I3.

This happens if and only if M = λ1I3. The Jordan normal form is justλ1 0 0
0 λ1 0
0 0 λ1


C2. Suppose M is defective, so that 1 = dim(Null(M1)) < 3 = n(1). The number of

independent eigenvectors for M is just dim(Null(M1)), and this is the number
of Jordan blocks. So if dim(Null(M1)) = 1, there is just one Jordan block, and
the Jordan normal form isλ1 1 0

0 λ1 1
0 0 λ1

 .

If dim(Null(M1)) = 1, the algorithm in the next section shows that we can arrive
at the Jordan normal form by picking a basis of the form B = {M2

1 v1,M1v1, v1}
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when v1 is any vector such that M2
1 v1 6= 0. If dim(Null(M1)) = 2 the Jordan

normal form is λ1 1 0
0 λ1 0
0 0 λ1

 .

When dim(Null(M1)) = 2 we can take B = {M1v1, v1, v3} when v1 is any
vector not in Null(M1) and v3 is chosen so that {M1v1, v3} is a basis for the
two-dimensional space Null(M1).

8. Optional Section: A general algorithm for finding a basis B of the kind
in Theorem 4.3.

1. For 1 ≤ i ≤ d recall Mi = M − λiIn. Fix i. Choose successive finite subsets
D(i, n(i)), D(i, n(i)− 1), . . . D(i, 1) so that for all integers N = n(i), n(i)− 1, . . . , 1
one has

(8.8)
(
∪n(i)m=NM

m−N
i D(i,m)

)
∪ Basis(Null(MN−1

i )) = Basis(Null(MN
i ))

Here Null(M t
i ) is the null space of the power M t

i of Mi. On the left side of (8.8),

Basis(Null(MN−1
i )) means any choice of basis of Null(MN−1

i ), and Mm−N
i D(i,m)

means the finite set of vectors which results from applying Mm−N
i to the elements

of D(i,m). The right side of (8.8) means that the left side should form a basis for
Null(MN

i ).
2. Each b ∈ D(i,m) is now a generalized eigenvector with eigenvalue λi and multiplicity
m. The transformation T sends Span({Mm−1

i b,Mm−2
i b, . . . , b}) back to itself, and

the matrix of the action of T on this span is the Jordan block matrix J(m,λi).

3. The union Bi = ∪n(i)m=1 ∪b∈D(i,m) {Mm−1
i b,Mm−2

i b, . . . , b} is a set of the kind in

Theorem 4.3(i). This gives a basis B = ∪di=1Bi for which [T ]BB is a Jordan block
matrix of the kind in Theorem 4.3.

Example 8.1. Suppose n(i) = 1 for all i, as in the previous section, so that d = n.
Condition (1) of the algorithm only applies with N = n(i) = 1. It says that we should have(

∪1m=1M
m−1
i D(i,m)

)
∪ Basis(Null(M1−1

i )) = Basis(Null(M1
i ))

The only integer m in the union on the left is m = 1. So this simplifies to

D(i, 1) ∪ Basis(Null(M0
i )) = Basis(Null(Mi))

Now M0
i should be interpreted as the identity matrix, so Basis(Null(M0

i )) is the empty
set, and we just want

D(i, 1) = Basis(Null(Mi))

In other words, D(i, 1) should consist of a basis for the nullspace of Mi, and we know that
when all n(i) = 1, this nullspace has dimension 1. DoD(i, 1) is a one element set. The setBi

in part (3) of the algorithm will just be D(i, 1), and now the basis B = ∪di=1Bi = ∪ni=1D(i, 1)
consists of one eigenvector for each λi. This agrees with the Theorem 2.1 of the previous
section.

Example 8.2. Here is more interesting example. Suppose n = 2 and that T : C2 → C2

has standard matrix

M =

(
1 1
−1 3

)
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The characteristic polynomial is

pM (z) = det

(
(z − 1) −1

1 (z − 3)

)
= (z−1)(z−3)+1 = z2−4z+3+1 = z2−4z+4 = (z−2)2

So d = 1, λ1 = 2 and n(1) = 2.
In step (1) of the algorithm, we let i = 1 and

M1 = M − λ1I2 = M − 2I2 =

(
−1 1
−1 1

)
Step (1) says we first want to find a set D(1, n(1)) = D(1, 2) with the following properties.
Setting N = n(i) = n(1) = 2, we want

(8.9) D(1, 2) ∪ Basis(Null(M2−1
1 )) = Basis(Null(M2

1 ))

Here

Null(M2−1
1 ) = Null(M1) = {

(
x1
x2

)
:

(
−1 1
−1 1

)
·
(
x1
x2

)
=

(
0
0

)
} = C ·

(
1
1

)
The matrix M2

1 is the zero matrix, so Null(M2
1 ) = C2. Thus (8.9) says that adding D(1, 2)

to the basis

(
1
1

)
for Null(M1) should give a basis for C2. One choice is to let

D(1, 2) = {
(

1
−1

)
}

Now steps 2 and 3 of the algorithm says that the set
(8.10)

∪b∈D(1,2){M2−1
1 b,M2−2

1 b} = {
(
−1 1
−1 1

)
·
(

1
−1

)
,

(
1
−1

)
} = {

(
−2
−2

)
,

(
1
−1

)
}

will a subset of the basis of C2 we want to construct, and this subset will produce #D(1, 2) =
1 Jordan block of the form

J(2, λ1) = J(2, 2) =

(
2 1
0 2

)
We know that any basis has to have two elements, so (8.10) is in fact all of the basis B
we want. Relative to this B, [T ]BB is the Jordan block J(2, λ1) = J(2, 2). The transition
matrix

P = PS←B

should have as its columns the vectors

{
(
−2
−2

)
,

(
1
−1

)
}

because of (8.10 ). So

P =

(
−2 1
−2 −1

)
and P−1 =

1

4

(
−1 −1
2 −2

)
We should have

[T ]BB = J(2, 2) =

(
2 1
0 2

)
= P−1MP = P−1

(
1 1
−1 3

)
P

and some calculations show this is indeed the case.


