FOURIER TRANSFORM NOTES

APRIL 4, 2019

1. The Discrete Fourier Transform

Suppose $1 \leq N \in \mathbb{Z}$. Let $G=\{0,1, \ldots, N-1\}$ and suppose $f: G \rightarrow \mathbb{C}$ is a function. We will always extend such f to functions on \mathbb{Z} by setting $f(j)=f(j+m N)$ for all integers j and m. Let $w=\exp (2 \pi \sqrt{-1} / N)$. Then w is a root of unity of order N in the sense that N is the smallest integer such that $w^{N}=1$.

For $j \in G$, define $e_{j}: G \rightarrow\{0,1, \ldots, N-1\}$ by

$$
\begin{equation*}
e_{j}(m)=w^{j m} \tag{1.1}
\end{equation*}
$$

for all m. We define an inner product \langle,$\rangle on the complex vector space C(G)=\{f: G \rightarrow \mathbb{C}\}$ of all complex functions on G by

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{N} \sum_{m=0}^{N-1} f(m) \overline{g(m)} \tag{1.2}
\end{equation*}
$$

Then $\left\{e_{j}\right\}_{j=0}^{N-1}$ forms an orthonormal basis of $C(G)$.
Every $f \in C(G)$ has a unique expansion as

$$
\begin{equation*}
f=\sum_{j=0}^{N-1} \hat{f}(j) e_{j} \tag{1.3}
\end{equation*}
$$

where $\hat{f}: G \rightarrow \mathbb{C}$ is the Fourier transform of f defined by

$$
\begin{equation*}
\hat{f}(j)=\left\langle f, e_{j}\right\rangle=\frac{1}{N} \sum_{m=0}^{N-1} f(m) w^{-j m} \tag{1.4}
\end{equation*}
$$

2. Fourier Inversion

Theorem 2.1. For all $f: G \rightarrow \mathbb{C}$ and $j \in \mathbb{Z}$ one has

$$
\begin{equation*}
\hat{\hat{f}}(j)=\frac{1}{N} f(-j) \tag{2.5}
\end{equation*}
$$

Proof. Recall that we extend f to a periodic function on Z by $f(j+m N)=f(j)$ for all $j, m \in \mathbb{Z}$. We now compute

$$
\begin{align*}
\hat{\hat{f}}(j) & =\frac{1}{N} \sum_{m=0}^{N-1} \hat{f}(m) w^{-j m} \\
& =\frac{1}{N} \sum_{m=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} f(k) w^{-m k}\right) w^{-j m} \\
& =\frac{1}{N^{2}} \sum_{k=0}^{N-1} f(k)\left(\sum_{m=0}^{N-1} w^{-m(k+j)}\right) \\
& =\frac{1}{N^{2}} f(-j) N \tag{2.6}
\end{align*}
$$

as claimed.

One consequence of this is that one can recover each of f and \hat{f} from the other in $O(N \log (N))$ steps using the fast Fourier transform discussed in class.

3. Convolution and Fourier Transforms

The convolution $f \star g: G \rightarrow \mathbb{C}$ of two functions $f, g \in \mathbb{C}(G)$ is defined by

$$
\begin{equation*}
f \star g(j)=\sum_{m=0}^{N-1} f(m) g(j-m) \tag{3.7}
\end{equation*}
$$

where as usual, we extend f, g and $f \star g$ to periodic functions on all of \mathbb{Z}.
Theorem 3.1.

$$
\widehat{f \star g}=N \cdot \hat{f} \cdot \hat{g}
$$

Proof. We compute

$$
\begin{align*}
\widehat{f \star g}(\ell) & =\frac{1}{N} \sum_{j=0}^{N-1} f \star g(j) w^{-j \ell} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \sum_{m=0}^{N-1} f(m) g(j-m) w^{-j \ell} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \sum_{m=0}^{N-1} f(m) g(j-m) w^{-m \ell} w^{-(j-m) \ell} \\
& =\frac{1}{N} \sum_{m=0}^{N-1} \sum_{m^{\prime}=0}^{N-1} f(m) g\left(m^{\prime}\right) w^{-m \ell} w^{-m^{\prime} \ell} \\
& =N \cdot\left(\frac{1}{N} \sum_{m=0}^{N-1} f(m) w^{-m \ell}\right) \cdot\left(\frac{1}{N} \sum_{m^{\prime}=0}^{N-1} g\left(m^{\prime}\right) w^{-m^{\prime} \ell}\right) \\
& =N \cdot \hat{f}(\ell) \cdot \hat{g}(\ell) \tag{3.8}
\end{align*}
$$

4. Computing products of polymomials and of integers using the Fourier TRANSFORM

Suppose

$$
F(t)=\sum_{r=0}^{p} a_{r} t^{r} \quad \text { and } \quad G(t)=\sum_{s=0}^{q} b_{s} t^{s}
$$

are two polynomials in the indeterminate t with complex coefficients. Computing the product polynomial

$$
\begin{equation*}
F(t) \cdot G(t)=\sum_{u=0}^{p+q} c_{u} t^{u} \tag{4.9}
\end{equation*}
$$

the naive way takes at least $p q$ operations. Let's see how to do this in $O((p+q) \cdot \ln (p+q))$ operations using the fast Fourier transform.

Pick $N>p+q$ and define functions $f, g: G=\{0, \ldots, N-1\} \rightarrow \mathbb{C}$ by

$$
f(r)=a_{r} \quad \text { if } \quad 0 \leq r \leq p, \quad f(r)=0 \quad \text { if } \quad p<r<N
$$

and

$$
\begin{equation*}
g(s)=b_{s} \quad \text { if } \quad 0 \leq s \leq q, \quad g(s)=0 \quad \text { if } \quad q<s<N \tag{4.10}
\end{equation*}
$$

We extend f and g to all of \mathbb{Z} in the usual way by making them periodic $\bmod N$.

Lemma 4.1. The coefficient c_{u} in 4.9) is

$$
c_{u}=f \star g(u)
$$

for $0 \leq u \leq p+q$.
Proof. Define $a_{r}=0$ if $p<r$ and let $b_{s}=0$ if $q<s$. It's clear that for $0 \leq u \leq p+q$ we have

$$
\begin{equation*}
c_{u}=\sum_{r+s=u, r \geq 0, s \geq 0} a_{r} b_{s} . \tag{4.11}
\end{equation*}
$$

For such u we have

$$
\begin{equation*}
f \star g(u)=\sum_{r=0}^{N-1} f(r) g(u-r)=\sum_{r=0}^{p} a_{r} g(u-r) \tag{4.12}
\end{equation*}
$$

since $f(r)=0$ if $p<r<N$ and $f(r)=a_{r}$ for $0 \leq r \leq p$.
We claim that to prove the Lemma, it will be enough to show

$$
\begin{equation*}
g(u-r)=0 \quad \text { if } \quad 0 \leq r \leq p<N, \quad 0 \leq u \leq p+q \quad \text { and } \quad u-r<0 \tag{4.13}
\end{equation*}
$$

If we can show this, then all the terms on the far right side of 4.12 with $s=u-r<0$ are 0 . The non-negative values of $s=u-r$ are exactly those which occur on the right side of (4.11) since for such $s, g(u-r)=g(s)=b_{s}$ because $0 \leq s=u-r<N$. So we will have shown 4.11) and 4.12) are equal provided we check 4.13).

To show (4.13) note that

$$
\begin{equation*}
0<u-r+N<N \tag{4.14}
\end{equation*}
$$

and by our extension of g to a periodic function $\bmod N$ we have

$$
\begin{equation*}
g(u-r)=g(u-r+N) \tag{4.15}
\end{equation*}
$$

Here

$$
\begin{equation*}
u-r+N=N-(r-u) \geq N-p>q \tag{4.16}
\end{equation*}
$$

since $0 \leq r \leq p$ and $u \geq 0$ give $r-u \leq p$ and we have assumed $p+q<N$. So combining 4.14) and 4.16) gives

$$
\begin{equation*}
q<u-r+N<N \tag{4.17}
\end{equation*}
$$

We can now apply the definition of the function g in 4.10 to conclude

$$
g(u-r)=g(u-r+N)=b_{u-r+N}=0
$$

since $b_{s}=0$ for $s>q$. This proves 4.13 and the Lemma.
Corollary 4.2. One can compute the product in 4.9) in $O((p+q) \ln (p+q))$ steps.
Proof. Taking $N=p+q+1$, Lemma 4.1 shows it is enough to find $f \star g$ quickly. We can find $f \star g$ quickly from $\widehat{f \star g}=n \cdot \hat{f} \cdot \hat{g}$. Since \hat{f} and \hat{g} can be computed quickly, this implies the Corollary.

This result implies one can compute the decimal expansions of product of integers quickly. Namely, suppose we are given integers

$$
M=\sum_{r=0}^{p} a_{r} 10^{r} \quad \text { and } \quad L=\sum_{s=0}^{q} b_{s} 10^{s}
$$

with the a_{r} and b_{s} in $\{0, \ldots, 9\}$. We write down the corresponding polyomials $F(T)$ and $G(T)$ and compute

$$
F(T) \cdot G(T)=\sum_{u=0}^{p+q} c_{u} t^{u}=H(T)
$$

quickly. Then

$$
\begin{equation*}
M \cdot L=H(10)=\sum_{u=0}^{p+q} c_{u} 10^{u} . \tag{4.18}
\end{equation*}
$$

Here the c_{u} are between 0 and $(p+q+1) \cdot 81$ so each c_{q} has $O(\ln (p+q))$ decimal digits. By induction on n, we see that the decimal expansion of

$$
\sum_{u=0}^{n} c_{u} 10^{u}
$$

can be computed in less than a constant times $n \cdot(p+q+1) \cdot 81$ steps for $0 \leq n \leq p+q$. So the number of operations needed to reduce the right hand side of (4.18) to decimal form is bounded by $O((p+q) \ln (p+q))$.

