FOURIER TRANSFORM NOTES

APRIL 4, 2019

1. The Discrete Fourier Transform

Suppose $1 \leq N \in \mathbb{Z}$. Let $G = \{0, 1, \dots, N-1\}$ and suppose $f : G \to \mathbb{C}$ is a function. We will always extend such f to functions on Z by setting f(j) = f(j + mN) for all integers j and m. Let $w = \exp(2\pi\sqrt{-1}/N)$. Then w is a root of unity of order N in the sense that N is the smallest integer such that $w^{N} = 1$.

For $j \in G$, define $e_j : G \to \{0, 1, \dots, N-1\}$ by

(1.1)
$$e_j(m) = w^{jm}$$

for all m. We define an inner product \langle , \rangle on the complex vector space $C(G) = \{f : G \to \mathbb{C}\}$ of all complex functions on G by

(1.2)
$$\langle f,g\rangle = \frac{1}{N} \sum_{m=0}^{N-1} f(m)\overline{g(m)}$$

Then $\{e_j\}_{j=0}^{N-1}$ forms an orthonormal basis of C(G). Every $f \in C(G)$ has a unique expansion as

(1.3)
$$f = \sum_{j=0}^{N-1} \hat{f}(j) e_j$$

where $\hat{f}: G \to \mathbb{C}$ is the Fourier transform of f defined by

(1.4)
$$\hat{f}(j) = \langle f, e_j \rangle = \frac{1}{N} \sum_{m=0}^{N-1} f(m) w^{-jm}$$

2. Fourier Inversion

Theorem 2.1. For all $f : G \to \mathbb{C}$ and $j \in \mathbb{Z}$ one has

(2.5)
$$\hat{f}(j) = \frac{1}{N}f(-j)$$

Proof. Recall that we extend f to a periodic function on Z by f(j+mN) = f(j) for all $j, m \in \mathbb{Z}$. We now compute

$$\hat{f}(j) = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}(m) w^{-jm}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} \left(\frac{1}{N} \sum_{k=0}^{N-1} f(k) w^{-mk} \right) w^{-jm}$$

$$= \frac{1}{N^2} \sum_{k=0}^{N-1} f(k) \left(\sum_{m=0}^{N-1} w^{-m(k+j)} \right)$$

$$= \frac{1}{N^2} f(-j) N$$

(2.6)

as claimed.

One consequence of this is that one can recover each of f and \hat{f} from the other in $O(N\log(N))$ steps using the fast Fourier transform discussed in class.

3. Convolution and Fourier Transforms

The convolution $f \star g : G \to \mathbb{C}$ of two functions $f, g \in \mathbb{C}(G)$ is defined by

(3.7)
$$f \star g(j) = \sum_{m=0}^{N-1} f(m)g(j-m)$$

where as usual, we extend f, g and $f \star g$ to periodic functions on all of \mathbb{Z} .

Theorem 3.1.

$$\widehat{f \star g} = N \cdot \hat{f} \cdot \hat{g}$$

Proof. We compute

$$\begin{split} \widehat{f \star g}(\ell) &= \frac{1}{N} \sum_{j=0}^{N-1} f \star g(j) w^{-j\ell} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} \sum_{m=0}^{N-1} f(m) g(j-m) w^{-j\ell} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} \sum_{m=0}^{N-1} f(m) g(j-m) w^{-m\ell} w^{-(j-m)\ell} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{m=0}^{N-1} f(m) g(m') w^{-m\ell} w^{-m'\ell} \\ &= N \cdot \left(\frac{1}{N} \sum_{m=0}^{N-1} f(m) w^{-m\ell} \right) \cdot \left(\frac{1}{N} \sum_{m'=0}^{N-1} g(m') w^{-m'\ell} \right) \\ &= N \cdot \hat{f}(\ell) \cdot \hat{g}(\ell) \end{split}$$

(3.8)

4. Computing products of polymomials and of integers using the Fourier transform

Suppose

$$F(t) = \sum_{r=0}^{p} a_r t^r \quad \text{and} \quad G(t) = \sum_{s=0}^{q} b_s t^s$$

are two polynomials in the indeterminate t with complex coefficients. Computing the product polynomial

(4.9)
$$F(t) \cdot G(t) = \sum_{u=0}^{p+q} c_u t^u$$

the naive way takes at least pq operations. Let's see how to do this in $O((p+q) \cdot \ln(p+q))$ operations using the fast Fourier transform.

Pick N > p + q and define functions $f, g : G = \{0, \dots, N - 1\} \to \mathbb{C}$ by

$$f(r) = a_r \quad \text{if} \quad 0 \le r \le p, \quad f(r) = 0 \quad \text{if} \quad p < r < N$$

and

(4.10)
$$g(s) = b_s$$
 if $0 \le s \le q$, $g(s) = 0$ if $q < s < N$.

We extend f and g to all of \mathbb{Z} in the usual way by making them periodic mod N.

Lemma 4.1. The coefficient c_u in (4.9) is

$$c_u = f \star g(u)$$

for $0 \le u \le p + q$.

Proof. Define $a_r = 0$ if p < r and let $b_s = 0$ if q < s. It's clear that for $0 \le u \le p + q$ we have

(4.11)
$$c_u = \sum_{r+s=u, r>0, s>0} a_r b_s.$$

For such u we have

(4.12)
$$f \star g(u) = \sum_{r=0}^{N-1} f(r)g(u-r) = \sum_{r=0}^{p} a_r \ g(u-r)$$

since f(r) = 0 if p < r < N and $f(r) = a_r$ for $0 \le r \le p$.

We claim that to prove the Lemma, it will be enough to show

(4.13)
$$g(u-r) = 0$$
 if $0 \le r \le p < N$, $0 \le u \le p+q$ and $u-r < 0$.

If we can show this, then all the terms on the far right side of (4.12) with s = u - r < 0 are 0. The non-negative values of s = u - r are exactly those which occur on the right side of (4.11) since for such s, $g(u - r) = g(s) = b_s$ because $0 \le s = u - r < N$. So we will have shown (4.11) and (4.12) are equal provided we check (4.13).

To show (4.13) note that

$$(4.14) 0 < u - r + N < N$$

and by our extension of g to a periodic function mod N we have

(4.15)
$$g(u-r) = g(u-r+N).$$

Here

(4.16)
$$u - r + N = N - (r - u) \ge N - p > q$$

since $0 \le r \le p$ and $u \ge 0$ give $r - u \le p$ and we have assumed p + q < N. So combining (4.14) and (4.16) gives

$$(4.17) q < u - r + N < N$$

We can now apply the definition of the function g in (4.10)to conclude

$$g(u-r) = g(u-r+N) = b_{u-r+N} = 0$$

since $b_s = 0$ for s > q. This proves (4.13) and the Lemma.

Corollary 4.2. One can compute the product in (4.9) in $O((p+q)\ln(p+q))$ steps.

Proof. Taking N = p + q + 1, Lemma 4.1 shows it is enough to find $f \star g$ quickly. We can find $f \star g$ quickly from $\widehat{f \star g} = n \cdot \widehat{f} \cdot \widehat{g}$. Since \widehat{f} and \widehat{g} can be computed quickly, this implies the Corollary. \Box

This result implies one can compute the decimal expansions of product of integers quickly. Namely, suppose we are given integers

$$M = \sum_{r=0}^{p} a_r 10^r$$
 and $L = \sum_{s=0}^{q} b_s 10^s$

with the a_r and b_s in $\{0, \ldots, 9\}$. We write down the corresponding polyomials F(T) and G(T) and compute

$$F(T) \cdot G(T) = \sum_{u=0}^{p+q} c_u t^u = H(T)$$

quickly. Then

(4.18)
$$M \cdot L = H(10) = \sum_{u=0}^{p+q} c_u 10^u.$$

Here the c_u are between 0 and $(p+q+1)\cdot 81$ so each c_q has $O(\ln(p+q))$ decimal digits. By induction on n, we see that the decimal expansion of

$$\sum_{u=0}^{n} c_u 10^u$$

can be computed in less than a constant times $n \cdot (p+q+1) \cdot 81$ steps for $0 \le n \le p+q$. So the number of operations needed to reduce the right hand side of (4.18) to decimal form is bounded by $O((p+q)\ln(p+q))$.