1. THE DISCRETE FOURIER TRANSFORM

Suppose $1 \leq N \in \mathbb{Z}$. Let $G = \{0, 1, \ldots, N - 1\}$ and suppose $f : G \to \mathbb{C}$ is a function. We will always extend such f to functions on \mathbb{Z} by setting $f(j) = f(j + mN)$ for all integers j and m. Let $w = \exp(2\pi \sqrt{-1}/N)$. Then w is a root of unity of order N in the sense that N is the smallest integer such that $w^N = 1$.

For $j \in G$, define $e_j : G \to \{0, 1, \ldots, N - 1\}$ by

$$e_j(m) = w^{jm}$$

for all m. We define an inner product \langle , \rangle on the complex vector space $C(G) = \{f : G \to \mathbb{C}\}$ of all complex functions on G by

$$\langle f, g \rangle = \frac{1}{N} \sum_{m=0}^{N-1} f(m)\overline{g(m)}$$

Then $\{e_j\}_{j=0}^{N-1}$ forms an orthonormal basis of $C(G)$.

Every $f \in C(G)$ has a unique expansion as

$$f = \sum_{j=0}^{N-1} \hat{f}(j)e_j$$

where $\hat{f} : G \to \mathbb{C}$ is the Fourier transform of f defined by

$$\hat{f}(j) = \langle f, e_j \rangle = \frac{1}{N} \sum_{m=0}^{N-1} f(m)w^{-jm}$$

2. FOURIER INVERSION

Theorem 2.1. For all $f : G \to \mathbb{C}$ and $j \in \mathbb{Z}$ one has

$$\hat{\hat{f}}(j) = \frac{1}{N} f(-j)$$

Proof. Recall that we extend f to a periodic function on \mathbb{Z} by $f(j + mN) = f(j)$ for all $j, m \in \mathbb{Z}$. We now compute

$$\hat{\hat{f}}(j) = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}(m)w^{-jm}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} \left(\frac{1}{N} \sum_{k=0}^{N-1} f(k)w^{-mk} \right) w^{-jm}$$

$$= \frac{1}{N^2} \sum_{k=0}^{N-1} f(k) \left(\sum_{m=0}^{N-1} w^{-m(k+j)} \right)$$

$$= \frac{1}{N^2} f(-j)N$$

as claimed. \[\square\]
One consequence of this is that one can recover each of f and \hat{f} from the other in $O(N \log(N))$ steps using the fast Fourier transform discussed in class.

3. Convolution and Fourier Transforms

The convolution $f \ast g : G \to \mathbb{C}$ of two functions $f, g \in \mathbb{C}(G)$ is defined by

$$f \ast g(j) = \sum_{m=0}^{N-1} f(m)g(j-m)$$

where as usual, we extend f, g and $f \ast g$ to periodic functions on all of \mathbb{Z}.

Theorem 3.1.

$$\hat{f} \ast \hat{g} = N \cdot \hat{f} \cdot \hat{g}$$

Proof. We compute

\[
\begin{align*}
\hat{f} \ast \hat{g}(\ell) &= \frac{1}{N} \sum_{j=0}^{N-1} f \ast g(j)w^{-j\ell} \\
&= \frac{1}{N} \sum_{j=0}^{N-1} \sum_{m=0}^{N-1} f(m)g(j-m)w^{-j\ell} \\
&= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{j=0}^{N-1} f(m)g(j-m)w^{-m\ell}w^{-(j-m)\ell} \\
&= \frac{1}{N} \sum_{m=0}^{N-1} f(m)g(m')w^{-m\ell}w^{-m'\ell} \\
&= N \cdot \left(\frac{1}{N} \sum_{m=0}^{N-1} f(m)w^{-m\ell} \right) \cdot \left(\frac{1}{N} \sum_{m'=0}^{N-1} g(m')w^{-m'\ell} \right) \\
&= N \cdot \hat{f}(\ell) \cdot \hat{g}(\ell)
\end{align*}
\]

(3.8)

4. Computing Products of Polynomials and of Integers Using the Fourier Transform

Suppose

$$F(t) = \sum_{r=0}^{p} a_r t^r \quad \text{and} \quad G(t) = \sum_{s=0}^{q} b_s t^s$$

are two polynomials in the indeterminate t with complex coefficients. Computing the product polynomial

$$F(t) \cdot G(t) = \sum_{u=0}^{p+q} c_u t^u$$

the naive way takes at least pq operations. Let’s see how to do this in $O((p+q) \cdot \ln(p+q))$ operations using the fast Fourier transform.

Pick $N > p + q$ and define functions $f, g : G = \{0, \ldots, N-1\} \to \mathbb{C}$ by

$$f(r) = a_r \quad \text{if} \quad 0 \leq r \leq p, \quad f(r) = 0 \quad \text{if} \quad p < r < N$$

and

$$g(s) = b_s \quad \text{if} \quad 0 \leq s \leq q, \quad g(s) = 0 \quad \text{if} \quad q < s < N.$$

We extend f and g to all of \mathbb{Z} in the usual way by making them periodic mod N.
Lemma 4.1. The coefficient c_u in (4.9) is

$$c_u = f \ast g(u)$$

for $0 \leq u \leq p + q$.

Proof. Define $a_r = 0$ if $p < r$ and let $b_s = 0$ if $q < s$. It’s clear that for $0 \leq u \leq p + q$ we have

(4.11) $$c_u = \sum_{r+s=u, \ r \geq 0, \ s \geq 0} a_r b_s.$$

For such u we have

(4.12) $$f \ast g(u) = \sum_{r=0}^{N-1} f(r)g(u-r) = \sum_{r=0}^{p} a_r g(u-r)$$

since $f(r) = 0$ if $p < r < N$ and $f(r) = a_r$ for $0 \leq r \leq p$.

We claim that to prove the Lemma, it will be enough to show

(4.13) $$g(u-r) = 0 \quad \text{if} \quad 0 \leq r \leq p < N, \quad 0 \leq u \leq p + q \quad \text{and} \quad u-r < 0.$$

If we can show this, then all the terms on the far right side of (4.12) with $s = u-r < 0$ are 0. The non-negative values of $s = u-r$ are exactly those which occur on the right side of (4.11) since for such s, $g(u-r) = g(s) = b_s$ because $0 \leq s = u-r < N$. So we will have shown (4.11) and (4.12) are equal provided we check (4.13).

To show (4.13), note that

(4.14) $$0 < u-r + N < N$$

and by our extension of g to a periodic function mod N we have

(4.15) $$g(u-r) = g(u-r+N).$$

Here

(4.16) $$u-r+N = N-(r-u) \geq N-p > q$$

since $0 \leq r \leq p$ and $u \geq 0$ give $r-u \leq p$ and we have assumed $p+q < N$. So combining (4.14) and (4.16) gives

(4.17) $$q < u-r + N < N$$

We can now apply the definition of the function g in (4.10) to conclude

$$g(u-r) = g(u-r+N) = b_{u-r+N} = 0$$

since $b_s = 0$ for $s > q$. This proves (4.13) and the Lemma. \qed

Corollary 4.2. One can compute the product in (4.9) in $O((p+q) \ln(p+q))$ steps.

Proof. Taking $N = p+q + 1$, Lemma 4.1 shows it is enough to find $f \ast g$ quickly. We can find $f \ast g$ quickly from $\hat{f} \ast \hat{g} = n \cdot \hat{f} \cdot \hat{g}$. Since f and \hat{g} can be computed quickly, this implies the Corollary. \qed

This result implies one can compute the decimal expansions of product of integers quickly. Namely, suppose we are given integers

$$M = \sum_{r=0}^{p} a_r 10^r \quad \text{and} \quad L = \sum_{s=0}^{q} b_s 10^s$$

with the a_r and b_s in $\{0, \ldots, 9\}$. We write down the corresponding polynomials $F(T)$ and $G(T)$ and compute

$$F(T) \cdot G(T) = \sum_{u=0}^{p+q} c_u t^u = H(T)$$
quickly. Then

\[(4.18) \quad M \cdot L = H(10) = \sum_{u=0}^{p+q} c_u 10^u.\]

Here the \(c_u\) are between 0 and \((p+q+1) \cdot 81\) so each \(c_q\) has \(O(\ln(p+q))\) decimal digits. By induction on \(n\), we see that the decimal expansion of

\[\sum_{u=0}^{n} c_u 10^u\]

can be computed in less than a constant times \(n \cdot (p + q + 1) \cdot 81\) steps for \(0 \leq n \leq p + q\). So the number of operations needed to reduce the right hand side of (4.18) to decimal form is bounded by \(O((p + q) \ln(p + q))\).