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1. The Discrete Fourier Transform

Suppose 1 ≤ N ∈ Z. Let G = {0, 1, . . . , N − 1} and suppose f : G → C is a function. We will
always extend such f to functions on Z by setting f(j) = f(j +mN) for all integers j and m. Let
w = exp(2π

√
−1/N). Then w is a root of unity of order N in the sense that N is the smallest

integer such that wN = 1.
For j ∈ G, define ej : G→ {0, 1, . . . , N − 1} by

(1.1) ej(m) = wjm

for all m. We define an inner product 〈 , 〉 on the complex vector space C(G) = {f : G→ C} of all
complex functions on G by

(1.2) 〈f, g〉 =
1

N

N−1∑
m=0

f(m)g(m)

Then {ej}N−1j=0 forms an orthonormal basis of C(G).

Every f ∈ C(G) has a unique expansion as

(1.3) f =

N−1∑
j=0

f̂(j)ej

where f̂ : G→ C is the Fourier transform of f defined by

(1.4) f̂(j) = 〈f, ej〉 =
1

N

N−1∑
m=0

f(m)w−jm

2. Fourier Inversion

Theorem 2.1. For all f : G→ C and j ∈ Z one has

(2.5)
ˆ̂
f(j) =

1

N
f(−j)

Proof. Recall that we extend f to a periodic function on Z by f(j +mN) = f(j) for all j,m ∈ Z.
We now compute

ˆ̂
f(j) =

1

N

N−1∑
m=0

f̂(m)w−jm

=
1

N

N−1∑
m=0

(
1

N

N−1∑
k=0

f(k)w−mk

)
w−jm

=
1

N2

N−1∑
k=0

f(k)

(
N−1∑
m=0

w−m(k+j)

)

=
1

N2
f(−j)N(2.6)

as claimed. �
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One consequence of this is that one can recover each of f and f̂ from the other in O(N log(N))
steps using the fast Fourier transform discussed in class.

3. Convolution and Fourier Transforms

The convolution f ? g : G→ C of two functions f, g ∈ C(G) is defined by

(3.7) f ? g(j) =

N−1∑
m=0

f(m)g(j −m)

where as usual, we extend f, g and f ? g to periodic functions on all of Z.

Theorem 3.1.
f̂ ? g = N · f̂ · ĝ

Proof. We compute

f̂ ? g(`) =
1

N

N−1∑
j=0

f ? g(j)w−j`

=
1

N

N−1∑
j=0

N−1∑
m=0

f(m)g(j −m)w−j`

=
1

N

N−1∑
j=0

N−1∑
m=0

f(m)g(j −m)w−m`w−(j−m)`

=
1

N

N−1∑
m=0

N−1∑
m′=0

f(m)g(m′)w−m`w−m
′`

= N ·

(
1

N

N−1∑
m=0

f(m)w−m`

)
·

(
1

N

N−1∑
m′=0

g(m′)w−m
′`

)
= N · f̂(`) · ĝ(`)(3.8)

�

4. Computing products of polymomials and of integers using the Fourier
transform

Suppose

F (t) =

p∑
r=0

art
r and G(t) =

q∑
s=0

bst
s

are two polynomials in the indeterminate t with complex coefficients. Computing the product
polynomial

(4.9) F (t) ·G(t) =

p+q∑
u=0

cut
u

the naive way takes at least pq operations. Let’s see how to do this in O((p+q) · ln(p+q)) operations
using the fast Fourier transform.

Pick N > p+ q and define functions f, g : G = {0, . . . , N − 1} → C by

f(r) = ar if 0 ≤ r ≤ p, f(r) = 0 if p < r < N

and

(4.10) g(s) = bs if 0 ≤ s ≤ q, g(s) = 0 if q < s < N.

We extend f and g to all of Z in the usual way by making them periodic mod N .
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Lemma 4.1. The coefficient cu in (4.9) is

cu = f ? g(u)

for 0 ≤ u ≤ p+ q.

Proof. Define ar = 0 if p < r and let bs = 0 if q < s. It’s clear that for 0 ≤ u ≤ p+ q we have

(4.11) cu =
∑

r+s=u, r≥0, s≥0

arbs.

For such u we have

(4.12) f ? g(u) =

N−1∑
r=0

f(r)g(u− r) =

p∑
r=0

ar g(u− r)

since f(r) = 0 if p < r < N and f(r) = ar for 0 ≤ r ≤ p.
We claim that to prove the Lemma, it will be enough to show

(4.13) g(u− r) = 0 if 0 ≤ r ≤ p < N, 0 ≤ u ≤ p+ q and u− r < 0.

If we can show this, then all the terms on the far right side of (4.12) with s = u− r < 0 are 0. The
non-negative values of s = u− r are exactly those which occur on the right side of (4.11) since for
such s, g(u− r) = g(s) = bs because 0 ≤ s = u− r < N . So we will have shown (4.11) and (4.12)
are equal provided we check (4.13).

To show (4.13) note that

(4.14) 0 < u− r +N < N

and by our extension of g to a periodic function mod N we have

(4.15) g(u− r) = g(u− r +N).

Here

(4.16) u− r +N = N − (r − u) ≥ N − p > q

since 0 ≤ r ≤ p and u ≥ 0 give r − u ≤ p and we have assumed p + q < N . So combining (4.14)
and (4.16) gives

(4.17) q < u− r +N < N

We can now apply the definition of the function g in (4.10)to conclude

g(u− r) = g(u− r +N) = bu−r+N = 0

since bs = 0 for s > q. This proves (4.13) and the Lemma. �

Corollary 4.2. One can compute the product in (4.9) in O((p+ q) ln(p+ q)) steps.

Proof. Taking N = p+ q+ 1, Lemma 4.1 shows it is enough to find f ? g quickly. We can find f ? g

quickly from f̂ ? g = n · f̂ · ĝ. Since f̂ and ĝ can be computed quickly, this implies the Corollary. �

This result implies one can compute the decimal expansions of product of integers quickly.
Namely, suppose we are given integers

M =

p∑
r=0

ar10r and L =

q∑
s=0

bs10s

with the ar and bs in {0, . . . , 9}. We write down the corresponding polyomials F (T ) and G(T ) and
compute

F (T ) ·G(T ) =

p+q∑
u=0

cut
u = H(T )
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quickly. Then

(4.18) M · L = H(10) =

p+q∑
u=0

cu10u.

Here the cu are between 0 and (p+q+1) ·81 so each cq has O(ln(p+q)) decimal digits. By induction
on n, we see that the decimal expansion of

n∑
u=0

cu10u

can be computed in less than a constant times n · (p + q + 1) · 81 steps for 0 ≤ n ≤ p + q. So the
number of operations needed to reduce the right hand side of (4.18) to decimal form is bounded by
O((p+ q) ln(p+ q)).
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