
SCHRODINGER’S APPROACH TO STATISTICAL MECHANICS

PARTIAL NOTES AS OF FEB. 20, 2019

1. Random samples of a system

These notes are about the first two chapters of Schrodinger’s book, “Statistical Thermodynam-
ics.”

Schrodinger describes two alternate approaches to defining what a system is. The first views a
system as a collection of some large number smaller objects, each of which can lie in one of a certain
number of states. A physical example would be a large collection of gas molecules, each of which
can have one of a certain number of energies. The second approach, due to Gibbs, thinks of making
a large number of copies of the system we actually care about, with each of the copies able to be in
one of a certain number of states.

I will also deal with a third possible interpretation. In this, a system may consist of many
individual elements which can each be in a certain number of different states, and we take a large
number of samples from this system. The third approach is useful for connecting these ideas to a
sequence of coin flips or rolls of a die.

The mathematics stays the same in all of the above approaches. I will focus in these notes on
what assumptions one is actually making in order for the math to apply.

Let’s start by saying that a system S is simply a finite sample space. Suppose each element of
the S lies in one of ` possible states. This is the same as saying that there is a random variable
X : S → {1, . . . , `} such that X(s) for s ∈ S describes the state of s. We will suppose that if
X(s) = j then s has energy Ej . Thus if f : {1, . . . , `} → {E1, . . . , E`} is the function defined by
f(j) = Ej , then Y (s) = f(X(s)) defines a random variable Y : S → R giving the energy of elements
of S.

Suppose now that N is a large integer and that S(N) is the set of all possible sequences s̃ =
(s1, . . . , sN ) of N elements of S. One can think of s̃ as a sequence of N samples from S. The
average energy of this set of N samples is

(1.1) E(s̃) =
1

N

N∑
i=1

Y (si) =
1

N

∑̀
j=1

Xj(s̃) · Ej

when X̃j(s̃) is the number of components si of s̃ = (s1, . . . , sN ) for which X(si) = j, i.e. for which
si is in state j.

The main question Schrodinger addresses is:

Problem 1.1. What are the “most likely” values of X̃j(s̃)/N are as s̃ ranges over all vectors
s̃ = (s1, . . . , sN ) such that E(s̃) is a prescribed number E.

Since we have not specified a probabilty measure on the set of s̃ described in this problem, we
can’t talk about the probability that Xj(s̃)/N takes on a certain value yet. What Schrodinger does
is to make a certain information theory/thermodynamic hypothesis described in in (2.1) below. He
then deduces from this results about the most probable values of Xj(s̃)/N .

2. The information theory/thermodynamic hypothesis

Each s̃ of the kind in Problem 1.1 gives a vector

b(s̃) = (X(s1), . . . , X(sN ))

1
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of states whose components are in A = {1, . . . , `}. Let AN be the set of all vectors of length N with
components in A. We have a subset B of AN defined by

B(E) = {(b1, . . . , bN ) :
1

N

N∑
i=1

f(bi) =
1

N

N∑
i=1

Ebi = E}.

This subset corresponds to the set of state vectors b(s̃) associated to N -tuples s̃ = (s1, . . . , sN ) with
energy E(s̃) = E.

Schrodinger’s computations make use of the following hypothesis:

Hypothesis 2.1. Every element of B(E) is equally likely to occur.

One way to view this hypothesis is that it says that any sequence of state vectors which produces
the required average energy E is equally likely to occur. To give different vectors in B(E) different
probabilities of occurring would require knowing something more about states than just the aver-
age energy of a large number of samples. This is an information theoretic argument; any other
assignment of probabilities to B(E) would imply one has more information than is supplied by the
average energy of all the samples. Another way to say one is assigning all elements of B(E) the
same probability of coming up is that we are maximizing our uncertainty regarding which element of
B(E) occurs. In the absence of further data, Occam’s razor says one should maximize uncertainty.
A key philosophical issue is whether the absence of further data is really because nature does not
produce additional constraints, or whether this is because we simply have not looked hard enough
for such constraints. This is a reason that the thermodynamic hypothesis (2.1) will not always be
physically reasonable.

The homework was about the following example of this set up. The sample space S equals
{1, 2, 3, 4, 5, 6}, which we will think of as the 6 sides of a fair die. Let ` = 6. The random variable
X : S → {1, 2, 3, 4, 5, 6} is just the identity map. We assign state j the energy Ej = j, so that
Y : S → {1, 2, 3, 4, 5, 6} is also the identity map. If we roll a fair die N times, the possible outcomes
are described by the vectors s̃ = (s1, . . . , sN ) ∈ S(N). If the die is fair and the rolls are independent
of one another, the probabiliity of a given s̃ appearing will be 1/#S(N) = 1/6N . The subset B(E)
is the set of such b(s̃) = s̃ for which the average of the rolls is E. Since in this example, every
sequence of rolls has the same likelihood of occurring, the same will be said for the elements of
B(E). This example is special, though, because not only are the elements of B(E) equally likely to
occur, we have created a scenario in which every element of S(N) is equally likely to occur when
we no longer care about the average energy of a sequence of rolls. Hypothesis (2.1) only concerns
those state vectors which give the prescribed average energy E.

Schrodinger describes another way to view Hypothesis 2.1. Rather than thinking of the compo-
nents of s̃ = (s1, . . . , sn) as samples from S, he prefers to think of having N copies all at once of the
given system. These copies are in contact with one another, but otherwise isolated from the rest of
the universe. Each copy can be in one of the ` states. A state vector (b1, . . . , bN ) ∈ AN records the
states of the copies, and B(E) is the set of such combinations of states which have average energy
E. The idea that all elements of B(E) should be equally likely comes about from the thought that
state vectors which have the same energy would be in equlibrium with each other. If two such
collections of N systems came into contact, neither would make the other less or more likely to be
seen. Admittedly, the implied interaction here between two such systems is a little vague, at least
to me.

3. Using the multinomial theorem to guess the most likely distribution of states

We now have a sample space B(E) consisting of all state vectors b̃ = (b1, . . . , bN ) giving rise to
the average energy

E =
1

N

N∑
i=1

f(bi) =
1

N

N∑
i=1

Ebi .
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We also have the probability density function on B(E) which gives every element of B(E) probability
1/#B(E). We can define for j = 1, . . . , ` a random variable

Xj : B(E)→ {1, . . . , `}

such that X(b̃) is the number of components bi of b̃ which equal j. Thus

Xj(b̃)/N

is the proportion of the components of b̃ which equal B(E).
The natural goal now is to find the expected value E(Xj)/N for j = 1, . . . , `. This would amount

to determining (under hypothesis 2.1) the expected proportion of the time that a sample will come
up in state j if we know that the average of all the energies of the samples is E.

Schrodinger refers to aj = Xj(b̃) as the occuptation number of state j for the state vector

b̃ = (b1, . . . , bN ). We have to have

(3.2) a1 + · · ·+ a` = N

since each of the N components of b̃ is in exactly one state and thus is counted exactly once on the
left side of (3.2). We have

(3.3) E =
1

N

N∑
i=1

f(bi) =
1

N

∑̀
j=1

aj · Ej

since in the sum
∑N
i=1 f(bi), the set of aj values of i for which bi = j contribute a total of aj · Ej

to E because f(X(bi)) = f(j) = Ej .
Suppose now that we ask for the probabiilty of a given set of occupation numbers ã = (a1, . . . , a`)

arising as (X1(b̃), . . . , X`(b̃)) as b̃ ranges over B(E). The odds of any b̃ occurring are 1/#B(E). So to

answer this, we need to find the number c(ã) of ways of writing down a vector b̃ = (b1, . . . , bN ) ∈ AN
the property that exactly aj of the bi’s are equal to j. This is the same as picking disjoint subsets
of {1, . . . , N} of sizes a1, . . . , a`. The answer is the multinomial coefficient

(3.4) c(ã) =
N !

a1! · · · a`!
The probability that ã will occur is then

c(ã)

#B(E)

4. The Lagrange multiplier argument

What Schrodinger does is to approximate the ã = (a1, . . . , a`) for which the requirements (3.2)
and (3.3) hold and for which the multinomial coefficient in (3.4) is largest.

The idea is to use the approximation ln(t!) ∼= t ln(t)− t to write

ln(c(ã)) ∼= ln(N !)−
∑̀
j=1

(aj ln(aj)− aj)

To maximize this, we should minimize

F (a1, . . . , a`) =
∑̀
j=1

(aj ln(aj)− aj)

over all vectors ã for which the constraints (3.2) and (3.3) hold.
Regard the aj now as real variables, rather than integer variables. We are now trying to find the

minimum of the function F (a1, . . . , a`) over all vectors of non-negative numbers aj satisfying the
constraints

G(a1, . . . , a`) =
∑̀
j=1

aj = 1
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and

H(a1, . . . , a`) =
1

N

∑̀
j=1

aj · Ej = E

These two constraints actually define hyperplanes which intersect for generic values of the Ej in a
a set L which is a translate of codimension two linear subspace of R`. The gradients

grad(G) = (
∂G

∂a1
, . . . ,

∂G

∂a`
) = (1, · · · , 1)

and

grad(H) = (
∂H

∂a1
, . . . ,

∂H

∂a`
) =

1

N
(E1, . . . , E`)

are perpendicular to the level sets ofG andH respectively, and they span the orthogonal complement
of the tangent plane to L at each point of L.

In order for the function F to have a local minimum at some point ã = (a1, . . . , a`) on L, the
gradient of F at ã should be perpendicular to every tangent vector to L at a. If this were not true,
one could move from ã in the direction of a tangent vector to L and remain in L while decreasing the
value of F . (We are just reproducing here the usual Lagrange mutiplier argument). The conclusion
is that there have to be constants ν and µ such that

grad(F ) = (
∂F

∂a1
, . . . ,

∂F

∂a`
)

= (ln(a1), . . . , ln(a`))

= −µ · (E1, . . . , E`)− ν · (1, . . . , 1)(4.5)

Therefore for all 1 ≤ j, k ≤ ` we have

ln(aj)− ln(ak) = −µEj − ν − (−µEi − ν) = −µ(Ej − Ei)
so

aj/ak = e−µEj/e−µEi

We can view this as saying that
aje

µEj = c = ake
µEk

is independent of j, so that

(4.6) aj = ce−µEj for j = 1, . . . , `.

One can solve for c using the fact that

N = a1 + . . . a` = c(
∑̀
j=1

e−µEj ).

So (4.6) becomes

(4.7)
aj
N

= ce−µEj =
e−µEj∑`
j=1 e

−µEj

=
−1

µ

∂

∂Ej

∑̀
j=1

e−µEj

Here aj/N is the proportion of the N systems which will be in state j at thermal equilibrium.
Notice that all these proportions are determined by one parameter µ. Schrodinger explains why it
is reasonable to define the average temperature T of the systems by

(4.8) µ =
1

kT
when k is the so-called Boltzmann constant.

In terms of multinomial coefficients, the significance of µ is that there is in fact a one parameter
family of occupation number vectors ã = (a1, . . . , a`) the multinomial coefficient c(ã) is (essentially)
as large as possible. As µ increases, (4.7) shows that those j for which Ej is large and positive occur
with lower frequency aj/N among all the states in the thermodynamic equilibrium associated to µ.
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Since µ = 1
kT , this means that as T approaches 0 from above, the proportion of states represented

by high energy states decreases. This makes heuristic sense when T is identified with the average
temperature of the systems.

Here is the connection of these calculations to Shannon entropy. We have been concerned with
finding for which ã = (a1, . . . , a`) satisying (3.2) and (3.3) the multinomial coefficient c(ã) in 3.4 is
as large as possible. Using the Stirling approximation to factorials we said this is (approximately)
the same as finding the maximum value of

F (a1, . . . , a`) =
∑̀
j=1

(aj ln(aj)− aj) =
∑̀
j=1

aj ln(aj)−
∑̀
j=1

aj =
∑̀
j=1

aj ln(aj)−N

over all such ã, where we used (3.2) in the last equality. This is the same as trying to maximize∑̀
j=1

aj ln(aj)

since N is fixed (but large). The fraction of the N systems which will lie in state j is pj = aj/N ,
and ∑̀

j=1

pj ln(pj) =
∑̀
j=1

aj
N

ln(
aj
N

)

=
1

N

∑̀
j=1

aj · (ln(aj)− ln(N))

=
1

N

∑̀
j=1

aj · ln(aj)−
lnN

N
(4.9)

again using a1 + . . .+ a` = 1. So we are in fact picking ã = (a1, . . . , a`) satisfying (3.2) and (3.3) so
as to maximize the Shannon entropy

HShannon(p1, . . . , p`) =
∑̀
j=1

pj ln(pj)

of the probabilties pj = aj/N of the various states occurring.

5. Reformulation using the partition function

Given the energies E1, . . . , E` of the states 1, . . . , `, define the associated partition function of a
real variable µ by

(5.10) Z =
∑̀
j=1

e−µEj

We can rewrite (4.7) as

(5.11)
aj
N

=
e−µEj

Z
=
−1

µ

∂

∂Ej
lnZ

Now

(5.12) E =
1

N

∑̀
j=1

aj · Ej =
∑̀
i=1

e−µEj

Z
· Ej = − ∂

∂µ
lnZ

The remarkable thing about the paritition function is that its partial derivatives thus determine
the average energy E and the probability distribution of states (a1/N, . . . , a`/N) at the thermal
equilibrium associated to a given temperature T = 1

kµ .
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6. Heat and work

So far we have not spoken about heat and work in thermodynamic systems. A useful example
to clarify the definition is a container in which there are a large number of molecules of different
kinds at the same temperature which is placed in a so-called heat bath. The system we will deal
with is the set of molecules in the container. We assume that the container is in contact with the
heat bath whose temperature could be different than that of the container.

Definition 6.1. (Zemansky, §4 ) Heat is the energy transferred between a system and its sur-
rounding by virtue of a temperature difference only. The heat transferred is positive if it represents
energy entering the system from the surroundings.

For example, if we put a heat insulator between the container and the surrounding heat bath,
then one says the system represented by the container is adiabatic. In this case, there can be no
heat transfer between the container and its surroundings.

Definition 6.2. (Zemansky, §3.1) If a system exerts a force on its surroundings and a displacement
takes place, the amounts of work done by the system is the product of the force with the component
of the displacement parallel to the force. Conversely, work can be done on the system by its
surroundings in a similar way and is counted as negative work done by the system.

In the physical example above of the container of gas molecules, one could imagine some work
being done on some of the molecules by the surroundings, e.g. by microwaves entering the container
from the outside. At the same time, there could be a heat transfer between the container and its
surroundings, as long as the boundary of the container is not insulating.

The first law of thermodynamics has to do with so-called infinitesimal changes in the system
during which the system passes at all times through thermal equilibria. The law states that

(6.13) dU = dQ+ dW

where dU represents the change in the internal energy of a system undergoing the infinitesimal
change, dW is the work done on the system by its surroundings during this change, and dQ is
the heat transferred into the system. We will see that the usual scenario if dW is positive is that
some of the work done on the system is not converted into an increase in the internal energy of the
system. Thus 0 ≤ dU < dW which implies dQ is negative and heat is lost by the system to its
surroundings. This agrees with our intuition that the energy supplied by work on the system can’t
be entirely converted to an increase in the energy of the system. Formalizing this will lead to the
second law of thermodynamics.

7. Schrodinger’s statistical analysis of the first law: First approach

Schrodinger gives a very interesting calculation of the first law using the statistical approach
described in the previous sections.

To try to stay as close to physical intuition as possible, let’s suppose at first that the system
S consists of some large number N or particles, each of which can be in one of ` states numbers
1, . . . , N . This is the first, naive interpretation of a system described in §1. Eventually I’ll return
to the other interpretations involving identical copies of a system, with each copy lying in one of `
possible states.

Let the energy of the jth state be Ej . We suppose the average energy E of the N particles is
known, and that we also know the temperature T = 1

kµ . Then we worked out the formula (5.11) for

the proportion aj/N of the N particles which will be in state j assuming the system is in thermal
equilibrium and that it obeys the thermodynamic hypothesis in §2.

Schrodinger supposes now that we exert a small external force on the particles in the system.
This changes the energy Ej of the those particles in the jth state to E′j = Ej + dEj , where dEj is
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infinitesimially small. The work one on the system is then

(7.14) dW =
∑̀
j=1

aj · dEj

since there are aj particles in state j. One should imagine this is done by training some tuned
microwaves on the molecules, or by some more mechanical means.

The question now is: If the energies are changes to E′j , what will be the new occupation numbers
a′j associated to the states? These occupation numbers will change in general if the system is in
thermal equilibrium, i.e. if adjusts itself so that it continues to obey the thermodynamic hypothesis.
The change involved will depend on the new temperature T ′ = T + dT of the system. One should
remember that the system may or may not be able to tranfser heat across it’s boundary with the
surroundings, depending on whether this boundary is insulating (adiabatic) or not.

Write

(7.15) daj = a′j − aj
The new average energy of the system is

(7.16) E′ =

N∑
j=1

a′jE
′
j =

N∑
j=1

(aj + daj) · (Ej + dEj)

Since we are talking about infinitesimal changes, the product of two infinitesimals is taken to be 0.
(One can be more precise by using derivatives and differentials, as in the next section.) Then E′

can be written as

(7.17) E′ =

N∑
j=1

ajEj +

N∑
j=1

ajdEj +

N∑
j=1

daj · Ej

I will use U for average energy of the system, as in Schrodinger’s book, and dU for the change in
energy. We get

(7.18) dU = E′ − E = dW + dQ

where

(7.19)

N∑
j=1

ajdEj = dW and

N∑
j=1

daj · Ej = dQ

Suppose the temperature change dT is 0 and that all of the dEj are positive. We would expect
that dU is in fact less than dW ; if we do work to raise the energies of the states, the system will
adjust in a way to dissipate some of that work. So that dQ should be negative, meaning that some
heat will be transferred to surroundings from the system.

Here is a variation on the container full of molecules example. Suppose the system consists of
some large number N of consumers, who fall into ` different groups. Suppose group number i
has some enthusiasm level Ei for a particular product. The average enthusiasm for the product

is then E = U = 1
N

∑N
i=1Ebi if bi ∈ {1, . . . , `} is the group in which the ith person falls. The

thermodynamic hypothesis requires the equal likelihood of any two ways of assigning the N people
to the ` possible groups which leads to the same average enthusiasm. This is surely not the case in
general, particularly if there is a tendency in the population to have polarized views of the product.
But let’s suppose the thermodynamic hypothesis holds. Then we can do the experiment Schrodinger
describes by doing the work (e.g. via advertising) of increasing the enthusiasm level Ej of members
of the jth group to some E′j = Ej + dEj . The temperature is an interesting invariant which under
the thermodynamic hypothesis is related to how quickly the proportion of the population having
extreme opinions drops. In general we would not expect that the work done by external forces
to increase appreciation of the product will be entirely converted into an increase in the average
enthusiasm for it. The difference is lost as “advertising heat.”
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Before going on to a more detailed mathematical account of Schrodinger’s analysis of the first
law, it’s worth commenting on the above reasoning in the context of the other interpretations of
statistical mechanics in §1. The second, Gibbs interpretation involves taking N identical copies
of the system we care about. We imagine these are in contact with one another. Such copies are
reminiscent of the Everett approach to quantum mechanics, in which the universe is constantly
splitting into copies which can follow different paths. It seems more difficult to imagine with this
interpretation what it means to do the work of changing the energies of the states in which the N
copies can find themselves. One is really creating a new system of states, each of which is tied to
one of the previous states. In the multi-universe interpretation, this might be seen as creating a
slight alteration in the universe itself. So the first law has to do with what happens when we do
work to change the universe. The universe goes along to some degree, but dissipates some of the
work as heat.

8. Statistical analysis of the first law: Second approach

Using (5.10) let us write

(8.20) F = ln(Z) = ln(
∑̀
j=1

e−µEj )

This F is a function of µ together with {E1, . . . , Ej}. To be consistent with Schrodinger’s book, we

will use U for the average energy E = 1
N

∑N
j=1 ajEj . The total differential of F is:

dF =
∂F

∂µ
dµ+

∑̀
j=1

∂F

∂Ej
dEj(8.21)

This total differential is an example of a differential form. One should think of a differential form
as assigning a number to pairs which consist of a point p = (µ,E1, . . . , E`) in R1+` and vector v in
the tangent space at this point in R1+`. This function should be linear in v when (µ,E1, . . . , E`)
is fixed. One can integrate such differentials over paths in R1+` by breaking the paths into ever
shorter segments. A differential form is exact if it has the form dG for some function G on R1+`,
where the value of dG on a tangent vector v at some point p is the directional derivative of G at p
in the direction of v.

From (5.12) and (5.11) and (8.21) we get

(8.22) dF = −Udµ− µ

N

∑̀
j=1

ajdEj

where remember we have U = E relative to the earlier formulas. Therefore

(8.23) d(F + Uµ) = µ(dU − 1

N

∑̀
j=1

ajdEj)

The differential form dEj is the one which produces the value δj when evaluated on the tangent
vector v = (0, 0, . . . , δj , . . . , 0) at each point p = (µ,E1, . . . , E`). Consider what happens when we
integrate d(F + Uµ) along a path in R1+` space from the point with coordinates (µ,E1, . . . , E`) to
a nearby point with coordinates (µ′, E′1, . . . , E

′
`). When the displacement vector

(8.24) (δµ, δE1, . . . , δE`) = (µ′, E′1, . . . , E
′
`)− (µ,E1, . . . , E`)

is small, this integral is approximated to first order by evaluating the element of the tangent space
at (µ,E1, . . . , E`) given by (8.23) at the displacement vector in (8.24). The term∑̀

j=1

aj · δEj
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which results is the work done by increasing the energy levels by δEj . The value of dU on the
displacement is a first order approximation to the change in energy of the system. In terms of the
previous section, its value on the displacement is to first order given by

∑̀
j=1

(a′jE
′
j)− ajEj

when a′j are the new occupation levels associated to (µ′, E′1, . . . , E
′
`). The significance of (8.23) is

that it gives an expression for the differential of heat, dQ as

(8.25) dQ = (dU − 1

N

∑̀
j=1

ajdEj) =
1

µ
d(F + Uµ)

Notice that this differential is not in general the differential of a function! This is a very significant
fact: it means that the integral of heat over paths is not just a function of the endpoints. However,

(8.26) dS = k · µ · dQ =
dQ

T
= k · d(F + Uµ)

is the differential of a function, i.e. an exact differential, where k is as before the Boltzmann
constant. This means that integrals of dS over paths will depend only on the endpoints of the path.

We can therefore define a new function S, the entropy of the system, by the formula

(8.27) −Ψ = U − ST = −kT ln(Z)

where −Ψ is called the free energy of the system. If we hold T constant, the differential of free
energy is just

dU − TdS = dU − dQ = dW.

This describes the work the system can do, or in other words, the part of the energy that is available
for doing work.

It might be interesting to pursue the interpretation of entropy, energy and free energy in a
psychological context. Suppose, for example, that one can reside in some number of energy levels.
A given individual might have a characteristic average energy. If their likelihood of being in various
energy levels satisfies the thermodynamic hypothesis, we could then assign them a temperature,
which would be related via the statistics we have worked out to the likelihood of finding them in
various energy states at a given time. The entropy of an individual then has to do with their free
energy via (8.27). The free energy describes how much of their energy, at a given temperature, they
can apply to do work on their environment, e.g. on writing or grading homework. Increasing either
the temperature or the entropy of the individual decreases their ability to convert energy into work.

9. Some formulas for the entropy S.

The first formula connects the entropy S to the free energy −Ψ and temperature T :

(9.28) S = −∂(−Ψ)

∂T
when T =

1

kµ
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To check this, use

−∂(−Ψ)

∂T
=

∂µ

T
· ∂Ψ

∂µ

= − 1

kT 2

∂( 1
µ ln(Z))

∂µ

= − 1

kT 2

(
−µ−2 ln(Z) +

1

µ
· ∂(ln(Z))

∂µ

)
= k ln(Z) +

−1

kT 2
· 1

µ
· (−U)(9.29)

= k ln(Z) +
U

T

=
Ψ + U

T
= S(9.30)

Here (8.29) is from (5.12) because U = E, and (8.30) is from (8.27).
It’s an interesting question to have a heuristic interpretation of (8.28). We have said that the

free energy −Ψ is the quantity of total energy available for doing work. So (8.28) says that if the
entropy S is very large and positive, the free energy is decreasing rapidly with temperature when
the other variables going into the free energy are held constant. Thus a person with large entropy
will become less efficient more quickly as the their temperature increases. A person with entropy
S = 0 would not the amount of energy they can apply to do work change with temperature. In this
sense they are more unflappable than a high entropy person.

Finally we connect the entropy defined by (8.27) to Shannon entropy. Recall that he proportion
of the N systems in the Schrodinger model which are in state j ∈ {1, . . . , `} was shown in (5.11) to
be

(9.31) pj =
aj
N

=
e−µEj

Z
=
−1

µ

∂

∂Ej
ln(Z).

Here

(9.32)
∑̀
j=1

pj = 1 and
∑̀
j=1

pjEj = E = U.

The Shannon entropy of the set of probabilities (p1, . . . , pN ) is

(9.33) H(p1, . . . , pN ) = −
N∑
j=1

pj ln2(pj)
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So we calculate

H(p1, . . . , pN ) = −
N∑
j=1

pj ln2(
e−µEj

Z
)

= −
N∑
j=1

pj(−µEj − ln(Z))/ ln(2)

=

µ · N∑
j=1

pjEj +

N∑
j=1

pj ln(Z)

 / ln(2)

= (µ · U + ln(Z))) / ln(2)(9.34)

=

(
U + kT ln(Z)

kT

)
/ ln(2)

=
S

k ln(2)
(9.35)

Here (8.34) is from (8.32) and (8.35) is from (8.27). So we conclude

S = k ln(2)H(p1, . . . , pN )

This explains why the thermodynamic entropy S is the same, up to multiplication by a universal
constant, as the information theoretic entropy H(p1, . . . , pN ) of the probabilities of the various
states arising. Since we showed in the multinomial argument that the values of p1, . . . , pN arose
from the thermodynamic hypothesis, we can now say that these probabilities are the ones which
maximize uncertainty for a given total average energy E = U .

In psychological terms, if the thermodynamic hypothesis holds, then one will have greater un-
certainty about the state of a person with high entropy and a given total energy than one will have
about the state of a person with the same energy level but lower entropy. It would be interesting
to see if one could make this statement more quantitative.
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