
SHANNON’S THEOREM

MATH 280 NOTES

1. Shannon entropy as a measure of uncertainty

These notes give a proof of Shannon’s Theorem concerning the axiomatic characterization
of the Shannon entropy H(p1, . . . , pN ) of a discrete probability density function P which
gives event i probability pi. Here 0 ≤ pi ≤ 1 and p1 + · · ·+ pN = 1. The Shannon entropy
H(p1, . . . , pN ) is a measure of the uncertainty associated with the probabilities p1, . . . , pN .

Here are two extreme cases to keep in mind:

1. Suppose p1 = 1 and pi = 0 for i = 2, . . . , N . Then we are certain that event 1 is
the one that occurred. So we have complete certainty about what will happen, and
H(1, 0, . . . , 0) should be 0.

2. Suppose pi = 1/N for all N . Then all of the events 1, . . . , N are equally likely. The
entropy (uncertainty)

(1.1) A(N) = H(1/N, . . . , 1/N)

should be the largest possible value for H(p1, . . . , pN ) over all probability vectors
(p1, . . . , pN ) of length N . Furthermore, if we increase N , then A(N) should increase
because then there are more equally likely alternatives, implying more uncertainty.

2. The axioms satisfied by Shannon entropy

Shannon requires H(p1, . . . , pN ) to satisfy three axioms:

1. H(p1, . . . , pN ) is continuous in p1, . . . , pN .
2. The function (1.1) should be monotonically increasing with N .
3. The following composition law holds. Suppose {1, . . . , N} is a disjoint union

{1, . . . , N} = C1 ∪ C2 ∪ · · · ∪ CM

of M disjoint sets. Write each Ci as

Ci = {c(i, 1), . . . , c(i, ri)}
where ri = #Ci. Suppose that we specify for each i a probability vector

(di,1, · · · , di,ri) with 0 ≤ di,` ≤ 1, di,1 + · · · di,ri = 1

Here di,` is the probability of event c(i, `) given that we know some event in Ci has
occured. Then

pc(i,`) = zi · di,`
when

zi = pc(i,1) + · · ·+ pc(i,ri)
is the probability that an event in Ci as occurred. The composition law requires
that

(2.2) H(p1, . . . , pN ) = H(z1, . . . , zM )+z1·H(d1,1, . . . , d1,r1)+· · ·+zM ·H(dM,1, . . . , dM,rM ).
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The meaning of the composition law

The composition law makes sense on breaking down the statement that a particular
event in {1, . . . , N} has occurred into two steps. The first step is the specification of the
Ci which contains the event. There is an uncertainty of H(z1, . . . , zM ) in specifying this
since the probability of landing in Ci is zi. The second step is that given that the event
that occurred is in Ci (which happens zi of the time), we have to specify which element of
Ci is the one which occurred. This specification is done in accordance with the conditional
probabilities di,1, . . . , di,ri , and we have to make this futher specification zi of the time. So
the expected uncertainty associated to the second step is the sum of zi · H(di,1, . . . , di,ri)
for i = 1, . . . ,M . This leads to the composition law (2.2).

The other interpretation we will develop for H(p1, . . . , pN ) is that it is the expected
amount of information (data) needed to specify which event occured. The composition law
then makes sense when one thinks of H(z1, . . . , zM ) as the expected amount of information
needed to specify in which Ci the event occurred, and the remaining terms on the right
in (2.2) are the expected additional amount of information then needed to pin down the
precise event that occurred.

3. Statement of Shannon’s Theorem

Shannon proved the following remarkable fact:

Theorem 3.1. Suppose H(p1, . . . , pN ) is an function which satisfies the three axioms listed
in §2. Let K = H(1/2, 1/2) when N = 2, and define 0 · log2(0) = 0. Then K > 0, and for
all N and all probability vectors (p1, . . . , pN ),

(3.3) H(p1, . . . , pN ) = −K
N∑
i=1

pi · log2(pi).

The reason for using log2 on the right side of (3.3) is that when K = 1, we will eventually
see that H(p1, . . . , pn) is the expected number of binary digits needed to express which event
occurred.

Here is why one can expect at least one parameter K to occur in the statement of
Theorem 3.1. If H(p1, . . . , pN ) is any function which satisfied the axioms of §2, we can
get a new function which satisfies all the axioms by multiplying each value H(p1, . . . , pN )
by the same positive constant. Shannon’s theorem shows that this is the only degree of
freedom in specifying H(p1, . . . , pN ).

4. Outline of the proof

Shannon proved the theorem by first showing that there is at most one way to specify
H(p1, . . . , pN ) for which H(1/2, 1/2) = K is specified. He then observed that the right side
of (3.3) works, so this is must be the only possibility for H(p1, . . . , pN ).

The proof that there is at most one H(p1, . . . , pN ) for which H(1/2, 1/2) = K follows
these steps:

1. Prove that is enough to show that when (p1, . . . , pN ) has each pi equal to ri/T for
some integers T ≥ 1 and ri ≥ 0 then (3.3) holds when K = A(1/2, 1/2).

2. Prove that values of H(r1/T, . . . , rN/T ) can be determined from knowing

(4.4) A(r) = H(1/r, . . . , 1/r)

for all integers 1 ≤ r, where on the right in (4.4), the vector (1/r, . . . , 1/r) has r
components.



SHANNON’S THEOREM 3

3. Show that we have to have

A(r) = A(2) · ln(r)

ln(2)

for all 1 ≤ r ∈ Z, and A(2) > 0. In view of steps 1 and 2, this shows there is at
most one choice for the entropy function H when A(2) = H(1/2, 1/2) is specified.

4. Show that formula on the right side of (3.3) satisfies the axioms and has K =
H(1/2, 1/2).

5. Step 1: Reduction to probability vectors with rational coordinates

Let F (r) be the function of of real numbers r ≥ 0 defined by F (r) = r · log2(r) for r > 0
and F (0) = 0. Since r and log2(r) are continuous for r > 0, and products of continuous
functions are continuous, F (r) is is continuous for r > 0, meaning that

lim
s→r

F (s) = F (r)

for r > 0. To show F (r) is continuous at r = 0, we have to show

lim
s→0+

F (s) = F (0) = 0

This follows from L’Hopital’s rule.
For all real constants K, the function

(5.5) −K
N∑
i=1

pi · log2(pi)

of real probability vectors (p1, . . . , pN ) is equal to

−K(F (p1) + · · ·+ F (pN )).

Since r → F (r) is continuous for r ≥ 0, the function

(p1, . . . , pN )→ F (pi)

is a continuous function of vectors (p1, . . . , pN ) which have non-negative real entries. This is
because if a sequence of vectors converges to a particular vector, the components of vectors
in the sequence must converge to the components of the limit. So (5.5) is a continuous
function of (p1, . . . , pN ).

Suppose now that

(5.6) H(p̃1, . . . , p̃N ) = −K
N∑
i=1

p̃i · log2(p̃i)

whenever (p̃1, . . . , p̃N ) is a probability vector which rational coordinates. For each probabil-
ity vector (p1, . . . , pN ), we claim we can find a sequence of probability vectors (p̃j,1, . . . , p̃j,N )
with rational coordinates which converges to (p1, . . . , pN ) as j →∞. To do this, first find
for 1 ≤ i ≤ N − 1 a sequence of rational numbers numbers 0 ≤ p̃j,i ≤ pi such that

lim
j→∞

p̃j,i = pi

We can then set
p̃j,N = 1− (p̃j,1 + · · ·+ pj,N−1)

to arrive at a probability vector (p̃j,1, . . . , p̃j,N ), and

lim
j→∞

(p̃j,1, . . . , p̃j,N ) = (p1, . . . , pN ).
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(Question: Why does one want to pick 0 ≤ p̃j,i ≤ pi for i = 1, . . . N − 1?)
By assumption, H is a continuous function of (p1, . . . , pN ), so

H(p1, . . . , pN ) = lim
j→∞

H(p̃j,1, . . . , p̃j,N )

We have also shown (5.5) is continuous, so

−K
N∑
i=1

pi · log2(pi) = lim
j→∞

−K
N∑
i=1

p̃j,i · log2(p̃j,i)

We can now apply (5.6) when (p̃1, . . . , p̃N ) = (p̃j,1, . . . , p̃j,N ) to conclude from the two above
limits that

H(p1, . . . , pN ) = −K
N∑
i=1

pi · log2(pi)

for all real probability vectors (p1, . . . , pN ) once this equality is proved for all probability
vectors with rational components.

6. Step 2: The H function is determined by the function A of positive
integers r given by A(r) = H(1/r, . . . , 1/r).

Because of Step 1, we need only show that the value of H on a probability vector

(p1, . . . , pN ) = (r1/T, . . . , rN/T )

with rational components ri/T can be determined if we know (r1/T, . . . , rN/T ) together
with all the numbers A(r) = H(1/r, . . . , 1/r) as r ranges over the positive integers.

To do this, we will apply the composition law to a new set of probabilities. Namely,
instead of assigning probabilities to the integers in {1, . . . , N}, we will assign probability
1/T to each of the integers in {1, . . . , T}. We break {1, . . . , T} into a disjoint union

{1, . . . , T} = C1 ∪ C2 ∪ · · · ∪ CN

of subsets Ci such that Ci has ri elements. This is possible because

1 = p1 + · · ·+ pN = r1/T + · · · rN/T = (r1 + · · ·+ rN )/T

so
T = r1 + · · ·+ rN .

If each element of {1, . . . , T} has probability 1/T of occurring, then the probability zi
that an element in Ci will occur is

zi = ri · (1/T ) = ri/T

since #Ci = ri. Given that some element of Ci has occurred, the conditional probability
that a particular element c(i, `) of Ci has occurred is then

d(i, `) = 1/ri.

This fits with the probability of each element of {1, . . . , T} being

zi · d(i, `) = (ri/T ) · (1/ri) = 1/T.

We now apply the composition law to this subdivision of {1, . . . , T} into N subsets
C1, . . . , CN . We end up with

H(1/T, . . . , 1/T ) = H(z1, . . . , zN ) +
N∑
i=1

zi ·H(1/ri, . . . , 1/ri)
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Since zi = ri/N and A(r) = H(1/r, . . . , 1/r), this is

A(T ) = H(r1/T, . . . , rN/T ) +
N∑
i=1

ri
T
·A(ri).

This formula shows that

H(p1, . . . , pN ) = H(r1/T, . . . , rN/T ) = A(T )−
N∑
i=1

ri
T
·A(ri) = A(T )−

N∑
i=1

pi ·A(ri).

So H(p1, . . . , pN ) when all the pi are rational is determined by (p1, . . . , pN ) together with
the values of A(r) for all integers r.

7. Step 3: Show A(2) > 0 and A(r) = A(2) · ln(r)ln(2) for 1 ≤ r ∈ Z.

We begin by showing that for r, s ≥ 1 we have

(7.7) A(rs) = A(r) + A(s)

This follows on assigning each integer in {1, . . . , rs} the probability 1/(rs) and on breaking
{1, . . . , rs} into a union C1 ∪ · · ·Cs of disjoint subsets Ci which each have r elements. The
composition law then gives

A(rs) = H(1/(rs), . . . , 1/(rs)) = H(1/s, . . . , 1/s) +
s∑

i=1

1

s
·H(1/r, . . . , 1/r) = A(s) + A(r).

We conclude that

A(1) = A(12) = A(1) + A(1) so A(1) = 0.

The second axiom in §2 that H must satisfy now implies

0 = A(1) < A(2)

We will now show

(7.8) A(r) = A(2) · ln(r)

ln(2)

for all 1 ≤ r ∈ Z. This is true for r = 1 since A(1) = 0.
To argue by contradiction, suppose first that there is some r > 1 such that

A(r) > A(2) · ln(r)

ln(2)
.

Then there must be a rational number p/q with p and q positive integers such that

(7.9) A(r)/A(2) > p/q >
ln(r)

ln(2)
.

This gives
p · ln(2) > q · ln(r)

so on exponentiating we find
2p > rq.

However, axiom 2 in section 2 says

A(2p) > A(rq).

Now using (7.7) gives
pA(2) > qA(r).
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But then
p/q > A(r)/A(2)

which contradicts (7.9).
One shows in exactly the same way that the assumption that

A(r) < A(2) · ln(r)

ln(2)

for some integer r > 1 leads to a contradiction. So we conclude (7.8) holds. Thus all the
A(r) are determined by A(2). By steps 2 and 1 we conclude that there can be at most one
function H satisying the axioms of §2 for which H(1/2, 1/2) = A(2) is a specified positive
number K.

8. Step 4: Show that the formula on the right side of (3.3) satisfies the
axioms of §2 for each value of K

This is similar to the first homework assignment, so I’ll not write this out here.

9. Step 5: End of the proof

We showed in Steps 1, 2 and 3 that there is at most one entropy function H satisfying
the axioms of §2 for which A(2) = H(1/2, 1/2) is a given number K, where K must be a
positive real number. In Step 4, we showed that the right side of (3.3) does give a function
of (p1, . . . , pN ) which satisfies the axioms, and the value of this function when N = 2 and
(p1, p2) = (1/2, 1/2) is

−K(p1 · log2(p1) + p2 · log2(p2)) = −K(
1

2
· log2(1/2) +

1

2
· log2(1/2)) = K.

So the right side of (3.3) is an entropy function H, and it is the only such H with
H(1/2, 1/2) = K.


