SHANNON'S THEOREM

MATH 280 NOTES

1. Shannon entropy as a measure of uncertainty

These notes give a proof of Shannon's Theorem concerning the axiomatic characterization of the Shannon entropy $H\left(p_{1}, \ldots, p_{N}\right)$ of a discrete probability density function P which gives event i probability p_{i}. Here $0 \leq p_{i} \leq 1$ and $p_{1}+\cdots+p_{N}=1$. The Shannon entropy $H\left(p_{1}, \ldots, p_{N}\right)$ is a measure of the uncertainty associated with the probabilities p_{1}, \ldots, p_{N}.

Here are two extreme cases to keep in mind:

1. Suppose $p_{1}=1$ and $p_{i}=0$ for $i=2, \ldots, N$. Then we are certain that event 1 is the one that occurred. So we have complete certainty about what will happen, and $H(1,0, \ldots, 0)$ should be 0 .
2. Suppose $p_{i}=1 / N$ for all N. Then all of the events $1, \ldots, N$ are equally likely. The entropy (uncertainty)

$$
\begin{equation*}
A(N)=H(1 / N, \ldots, 1 / N) \tag{1.1}
\end{equation*}
$$

should be the largest possible value for $H\left(p_{1}, \ldots, p_{N}\right)$ over all probability vectors $\left(p_{1}, \ldots, p_{N}\right)$ of length N. Furthermore, if we increase N, then $A(N)$ should increase because then there are more equally likely alternatives, implying more uncertainty.

2. The axioms satisfied by Shannon entropy

Shannon requires $H\left(p_{1}, \ldots, p_{N}\right)$ to satisfy three axioms:

1. $H\left(p_{1}, \ldots, p_{N}\right)$ is continuous in p_{1}, \ldots, p_{N}.
2. The function (1.1) should be monotonically increasing with N.
3. The following composition law holds. Suppose $\{1, \ldots, N\}$ is a disjoint union

$$
\{1, \ldots, N\}=C_{1} \cup C_{2} \cup \cdots \cup C_{M}
$$

of M disjoint sets. Write each C_{i} as

$$
C_{i}=\left\{c(i, 1), \ldots, c\left(i, r_{i}\right)\right\}
$$

where $r_{i}=\# C_{i}$. Suppose that we specify for each i a probability vector

$$
\left(d_{i, 1}, \cdots, d_{i, r_{i}}\right) \quad \text { with } \quad 0 \leq d_{i, \ell} \leq 1, d_{i, 1}+\cdots d_{i, r_{i}}=1
$$

Here $d_{i, \ell}$ is the probability of event $c(i, \ell)$ given that we know some event in C_{i} has occured. Then

$$
p_{c(i, \ell)}=z_{i} \cdot d_{i, \ell}
$$

when

$$
z_{i}=p_{c(i, 1)}+\cdots+p_{c\left(i, r_{i}\right)}
$$

is the probability that an event in C_{i} as occurred. The composition law requires that
(2.2) $H\left(p_{1}, \ldots, p_{N}\right)=H\left(z_{1}, \ldots, z_{M}\right)+z_{1} \cdot H\left(d_{1,1}, \ldots, d_{1, r_{1}}\right)+\cdots+z_{M} \cdot H\left(d_{M, 1}, \ldots, d_{M, r_{M}}\right)$.

[^0]
The meaning of the composition law

The composition law makes sense on breaking down the statement that a particular event in $\{1, \ldots, N\}$ has occurred into two steps. The first step is the specification of the C_{i} which contains the event. There is an uncertainty of $H\left(z_{1}, \ldots, z_{M}\right)$ in specifying this since the probability of landing in C_{i} is z_{i}. The second step is that given that the event that occurred is in C_{i} (which happens z_{i} of the time), we have to specify which element of C_{i} is the one which occurred. This specification is done in accordance with the conditional probabilities $d_{i, 1}, \ldots, d_{i, r_{i}}$, and we have to make this futher specification z_{i} of the time. So the expected uncertainty associated to the second step is the sum of $z_{i} \cdot H\left(d_{i, 1}, \ldots, d_{i, r_{i}}\right)$ for $i=1, \ldots, M$. This leads to the composition law (2.2).

The other interpretation we will develop for $H\left(p_{1}, \ldots, p_{N}\right)$ is that it is the expected amount of information (data) needed to specify which event occured. The composition law then makes sense when one thinks of $H\left(z_{1}, \ldots, z_{M}\right)$ as the expected amount of information needed to specify in which C_{i} the event occurred, and the remaining terms on the right in (2.2) are the expected additional amount of information then needed to pin down the precise event that occurred.

3. Statement of Shannon's Theorem

Shannon proved the following remarkable fact:
Theorem 3.1. Suppose $H\left(p_{1}, \ldots, p_{N}\right)$ is an function which satisfies the three axioms listed in §2. Let $K=H(1 / 2,1 / 2)$ when $N=2$, and define $0 \cdot \log _{2}(0)=0$. Then $K>0$, and for all N and all probability vectors $\left(p_{1}, \ldots, p_{N}\right)$,

$$
\begin{equation*}
H\left(p_{1}, \ldots, p_{N}\right)=-K \sum_{i=1}^{N} p_{i} \cdot \log _{2}\left(p_{i}\right) . \tag{3.3}
\end{equation*}
$$

The reason for using $\log _{2}$ on the right side of (3.3) is that when $K=1$, we will eventually see that $H\left(p_{1}, \ldots, p_{n}\right)$ is the expected number of binary digits needed to express which event occurred.

Here is why one can expect at least one parameter K to occur in the statement of Theorem 3.1. If $H\left(p_{1}, \ldots, p_{N}\right)$ is any function which satisfied the axioms of $\S 2$, we can get a new function which satisfies all the axioms by multiplying each value $H\left(p_{1}, \ldots, p_{N}\right)$ by the same positive constant. Shannon's theorem shows that this is the only degree of freedom in specifying $H\left(p_{1}, \ldots, p_{N}\right)$.

4. Outline of the proof

Shannon proved the theorem by first showing that there is at most one way to specify $H\left(p_{1}, \ldots, p_{N}\right)$ for which $H(1 / 2,1 / 2)=K$ is specified. He then observed that the right side of (3.3) works, so this is must be the only possibility for $H\left(p_{1}, \ldots, p_{N}\right)$.

The proof that there is at most one $H\left(p_{1}, \ldots, p_{N}\right)$ for which $H(1 / 2,1 / 2)=K$ follows these steps:

1. Prove that is enough to show that when $\left(p_{1}, \ldots, p_{N}\right)$ has each p_{i} equal to r_{i} / T for some integers $T \geq 1$ and $r_{i} \geq 0$ then (3.3) holds when $K=A(1 / 2,1 / 2)$.
2. Prove that values of $H\left(r_{1} / T, \ldots, r_{N} / T\right)$ can be determined from knowing

$$
\begin{equation*}
A(r)=H(1 / r, \ldots, 1 / r) \tag{4.4}
\end{equation*}
$$

for all integers $1 \leq r$, where on the right in (4.4), the vector $(1 / r, \ldots, 1 / r)$ has r components.
3. Show that we have to have

$$
A(r)=A(2) \cdot \frac{\ln (r)}{\ln (2)}
$$

for all $1 \leq r \in \mathbb{Z}$, and $A(2)>0$. In view of steps 1 and 2 , this shows there is at most one choice for the entropy function H when $A(2)=H(1 / 2,1 / 2)$ is specified.
4. Show that formula on the right side of (3.3) satisfies the axioms and has $K=$ $H(1 / 2,1 / 2)$.

5. Step 1: Reduction to probability vectors with Rational coordinates

Let $F(r)$ be the function of of real numbers $r \geq 0$ defined by $F(r)=r \cdot \log _{2}(r)$ for $r>0$ and $F(0)=0$. Since r and $\log _{2}(r)$ are continuous for $r>0$, and products of continuous functions are continuous, $F(r)$ is is continuous for $r>0$, meaning that

$$
\lim _{s \rightarrow r} F(s)=F(r)
$$

for $r>0$. To show $F(r)$ is continuous at $r=0$, we have to show

$$
\lim _{s \rightarrow 0^{+}} F(s)=F(0)=0
$$

This follows from L'Hopital's rule.
For all real constants K, the function

$$
\begin{equation*}
-K \sum_{i=1}^{N} p_{i} \cdot \log _{2}\left(p_{i}\right) \tag{5.5}
\end{equation*}
$$

of real probability vectors $\left(p_{1}, \ldots, p_{N}\right)$ is equal to

$$
-K\left(F\left(p_{1}\right)+\cdots+F\left(p_{N}\right)\right)
$$

Since $r \rightarrow F(r)$ is continuous for $r \geq 0$, the function

$$
\left(p_{1}, \ldots, p_{N}\right) \rightarrow F\left(p_{i}\right)
$$

is a continuous function of vectors $\left(p_{1}, \ldots, p_{N}\right)$ which have non-negative real entries. This is because if a sequence of vectors converges to a particular vector, the components of vectors in the sequence must converge to the components of the limit. So (5.5) is a continuous function of $\left(p_{1}, \ldots, p_{N}\right)$.

Suppose now that

$$
\begin{equation*}
H\left(\tilde{p}_{1}, \ldots, \tilde{p}_{N}\right)=-K \sum_{i=1}^{N} \tilde{p}_{i} \cdot \log _{2}\left(\tilde{p}_{i}\right) \tag{5.6}
\end{equation*}
$$

whenever $\left(\tilde{p}_{1}, \ldots, \tilde{p}_{N}\right)$ is a probability vector which rational coordinates. For each probability vector $\left(p_{1}, \ldots, p_{N}\right)$, we claim we can find a sequence of probability vectors ($\tilde{p}_{j, 1}, \ldots, \tilde{p}_{j, N}$) with rational coordinates which converges to $\left(p_{1}, \ldots, p_{N}\right)$ as $j \rightarrow \infty$. To do this, first find for $1 \leq i \leq N-1$ a sequence of rational numbers numbers $0 \leq \tilde{p}_{j, i} \leq p_{i}$ such that

$$
\lim _{j \rightarrow \infty} \tilde{p}_{j, i}=p_{i}
$$

We can then set

$$
\tilde{p}_{j, N}=1-\left(\tilde{p}_{j, 1}+\cdots+p_{j, N-1}\right)
$$

to arrive at a probability vector $\left(\tilde{p}_{j, 1}, \ldots, \tilde{p}_{j, N}\right)$, and

$$
\lim _{j \rightarrow \infty}\left(\tilde{p}_{j, 1}, \ldots, \tilde{p}_{j, N}\right)=\left(p_{1}, \ldots, p_{N}\right)
$$

(Question: Why does one want to pick $0 \leq \tilde{p}_{j, i} \leq p_{i}$ for $i=1, \ldots N-1$?)
By assumption, H is a continuous function of $\left(p_{1}, \ldots, p_{N}\right)$, so

$$
H\left(p_{1}, \ldots, p_{N}\right)=\lim _{j \rightarrow \infty} H\left(\tilde{p}_{j, 1}, \ldots, \tilde{p}_{j, N}\right)
$$

We have also shown (5.5) is continuous, so

$$
-K \sum_{i=1}^{N} p_{i} \cdot \log _{2}\left(p_{i}\right)=\lim _{j \rightarrow \infty}-K \sum_{i=1}^{N} \tilde{p}_{j, i} \cdot \log _{2}\left(\tilde{p}_{j, i}\right)
$$

We can now apply (5.6) when $\left(\tilde{p}_{1}, \ldots, \tilde{p}_{N}\right)=\left(\tilde{p}_{j, 1}, \ldots, \tilde{p}_{j, N}\right)$ to conclude from the two above limits that

$$
H\left(p_{1}, \ldots, p_{N}\right)=-K \sum_{i=1}^{N} p_{i} \cdot \log _{2}\left(p_{i}\right)
$$

for all real probability vectors $\left(p_{1}, \ldots, p_{N}\right)$ once this equality is proved for all probability vectors with rational components.
6. Step 2: The H function is determined by the function A of positive integers r given by $A(r)=H(1 / r, \ldots, 1 / r)$.
Because of Step 1, we need only show that the value of H on a probability vector

$$
\left(p_{1}, \ldots, p_{N}\right)=\left(r_{1} / T, \ldots, r_{N} / T\right)
$$

with rational components r_{i} / T can be determined if we know $\left(r_{1} / T, \ldots, r_{N} / T\right)$ together with all the numbers $A(r)=H(1 / r, \ldots, 1 / r)$ as r ranges over the positive integers.

To do this, we will apply the composition law to a new set of probabilities. Namely, instead of assigning probabilities to the integers in $\{1, \ldots, N\}$, we will assign probability $1 / T$ to each of the integers in $\{1, \ldots, T\}$. We break $\{1, \ldots, T\}$ into a disjoint union

$$
\{1, \ldots, T\}=C_{1} \cup C_{2} \cup \cdots \cup C_{N}
$$

of subsets C_{i} such that C_{i} has r_{i} elements. This is possible because

$$
1=p_{1}+\cdots+p_{N}=r_{1} / T+\cdots r_{N} / T=\left(r_{1}+\cdots+r_{N}\right) / T
$$

so

$$
T=r_{1}+\cdots+r_{N} .
$$

If each element of $\{1, \ldots, T\}$ has probability $1 / T$ of occurring, then the probability z_{i} that an element in C_{i} will occur is

$$
z_{i}=r_{i} \cdot(1 / T)=r_{i} / T
$$

since $\# C_{i}=r_{i}$. Given that some element of C_{i} has occurred, the conditional probability that a particular element $c(i, \ell)$ of C_{i} has occurred is then

$$
d(i, \ell)=1 / r_{i} .
$$

This fits with the probability of each element of $\{1, \ldots, T\}$ being

$$
z_{i} \cdot d(i, \ell)=\left(r_{i} / T\right) \cdot\left(1 / r_{i}\right)=1 / T .
$$

We now apply the composition law to this subdivision of $\{1, \ldots, T\}$ into N subsets C_{1}, \ldots, C_{N}. We end up with

$$
H(1 / T, \ldots, 1 / T)=H\left(z_{1}, \ldots, z_{N}\right)+\sum_{i=1}^{N} z_{i} \cdot H\left(1 / r_{i}, \ldots, 1 / r_{i}\right)
$$

Since $z_{i}=r_{i} / N$ and $A(r)=H(1 / r, \ldots, 1 / r)$, this is

$$
A(T)=H\left(r_{1} / T, \ldots, r_{N} / T\right)+\sum_{i=1}^{N} \frac{r_{i}}{T} \cdot A\left(r_{i}\right)
$$

This formula shows that

$$
H\left(p_{1}, \ldots, p_{N}\right)=H\left(r_{1} / T, \ldots, r_{N} / T\right)=A(T)-\sum_{i=1}^{N} \frac{r_{i}}{T} \cdot A\left(r_{i}\right)=A(T)-\sum_{i=1}^{N} p_{i} \cdot A\left(r_{i}\right)
$$

So $H\left(p_{1}, \ldots, p_{N}\right)$ when all the p_{i} are rational is determined by $\left(p_{1}, \ldots, p_{N}\right)$ together with the values of $A(r)$ for all integers r.

$$
\text { 7. STEP 3: SHOW } A(2)>0 \text { AND } A(r)=A(2) \cdot \frac{\ln (r)}{\ln (2)} \text { FOR } 1 \leq r \in \mathbb{Z} \text {. }
$$

We begin by showing that for $r, s \geq 1$ we have

$$
\begin{equation*}
A(r s)=A(r)+A(s) \tag{7.7}
\end{equation*}
$$

This follows on assigning each integer in $\{1, \ldots, r s\}$ the probability $1 /(r s)$ and on breaking $\{1, \ldots, r s\}$ into a union $C_{1} \cup \cdots C_{s}$ of disjoint subsets C_{i} which each have r elements. The composition law then gives
$A(r s)=H(1 /(r s), \ldots, 1 /(r s))=H(1 / s, \ldots, 1 / s)+\sum_{i=1}^{s} \frac{1}{s} \cdot H(1 / r, \ldots, 1 / r)=A(s)+A(r)$.
We conclude that

$$
A(1)=A\left(1^{2}\right)=A(1)+A(1) \quad \text { so } \quad A(1)=0
$$

The second axiom in $\S 2$ that H must satisfy now implies

$$
0=A(1)<A(2)
$$

We will now show

$$
\begin{equation*}
A(r)=A(2) \cdot \frac{\ln (r)}{\ln (2)} \tag{7.8}
\end{equation*}
$$

for all $1 \leq r \in \mathbb{Z}$. This is true for $r=1$ since $A(1)=0$.
To argue by contradiction, suppose first that there is some $r>1$ such that

$$
A(r)>A(2) \cdot \frac{\ln (r)}{\ln (2)}
$$

Then there must be a rational number p / q with p and q positive integers such that

$$
\begin{equation*}
A(r) / A(2)>p / q>\frac{\ln (r)}{\ln (2)} \tag{7.9}
\end{equation*}
$$

This gives

$$
p \cdot \ln (2)>q \cdot \ln (r)
$$

so on exponentiating we find

$$
2^{p}>r^{q}
$$

However, axiom 2 in section 2 says

$$
A\left(2^{p}\right)>A\left(r^{q}\right)
$$

Now using (7.7) gives

$$
p A(2)>q A(r)
$$

But then

$$
p / q>A(r) / A(2)
$$

which contradicts (7.9).
One shows in exactly the same way that the assumption that

$$
A(r)<A(2) \cdot \frac{\ln (r)}{\ln (2)}
$$

for some integer $r>1$ leads to a contradiction. So we conclude (7.8) holds. Thus all the $A(r)$ are determined by $A(2)$. By steps 2 and 1 we conclude that there can be at most one function H satisying the axioms of $\S 2$ for which $H(1 / 2,1 / 2)=A(2)$ is a specified positive number K.
8. Step 4: Show that the formula on the right side of (3.3) satisfies the AXIOMS OF $\S 2$ FOR EACH VALUE OF K

This is similar to the first homework assignment, so I'll not write this out here.

9. Step 5: End of the proof

We showed in Steps 1, 2 and 3 that there is at most one entropy function H satisfying the axioms of $\S 2$ for which $A(2)=H(1 / 2,1 / 2)$ is a given number K, where K must be a positive real number. In Step 4, we showed that the right side of (3.3) does give a function of $\left(p_{1}, \ldots, p_{N}\right)$ which satisfies the axioms, and the value of this function when $N=2$ and $\left(p_{1}, p_{2}\right)=(1 / 2,1 / 2)$ is

$$
-K\left(p_{1} \cdot \log _{2}\left(p_{1}\right)+p_{2} \cdot \log _{2}\left(p_{2}\right)\right)=-K\left(\frac{1}{2} \cdot \log _{2}(1 / 2)+\frac{1}{2} \cdot \log _{2}(1 / 2)\right)=K
$$

So the right side of (3.3) is an entropy function H, and it is the only such H with $H(1 / 2,1 / 2)=K$.

[^0]: Date: January 2019.

