1. Conjugacy classes, class equation and p-groups

1. Suppose G is a group with center $Z(G)$. Show that if the index of $Z(G)$ in G is finite and equal to n, then the conjugacy class of each element g of G has at most n elements. What is an easy example in which there are conjugacy classes having n elements?

2. Write down explicitly all terms in the class equation for the symmetric group S_4. This involves, in particular, finding representatives for the conjugacy classes in S_4. You can use exercise (You can use exercise # 4 from homework # 2).

3. Show that if p is a prime and G is a finite group of order p^n for some integer $n \geq 1$, then G contains a subgroup of order p^a for all integers a in the range $0 \leq a \leq n$. (Hint: Use induction and the fact that G has a non-trivial center.)

2. First applications of Sylow’s Theorem

4. If G_1 and G_2 are groups, the product group $G_1 \times G_2$ has underlying set $\{(g_1, g_2) : g_1 \in G_1, g_2 \in G_2\}$ and componentwise multiplication. Thus $(g_1, g_2) \cdot (g_1', g_2') = (g_1g_1', g_2g_2')$. Suppose G_1 and G_2 are both equal to the symmetric group S_3. For all primes p, describe the p-Sylow subgroups of the product group $S_3 \times S_3$, and verify that the number of these is congruent to 1 mod p and divides $\#(S_3 \times S_3)$.

5. Show that every group of order 200 has a normal 5-Sylow subgroup.

6. Suppose that P is a normal p-Sylow subgroup of a group G and that G is a normal subgroup of another group Γ. Show that P is normal in Γ. (Hint: A conjugate of P by an element of Γ is contained in G since G is normal.)