1. Rational roots and geometric constructions

1. Suppose \(f(x) = x^m + a_{m-1}x^{m-1} + \cdots + a_0 \) is a polynomial in \(x \) with coefficients \(a_i \) in \(\mathbf{Z} \). Show that any root of \(f(x) \) in \(\mathbf{Q} \) must lie in \(\mathbf{Z} \).

(Hint: Let \(r/s \) be a root in which \(r \) and \(s \) are coprime integers and \(s > 1 \). Write \(f(r/s) = 0 \) as
\[
(r/s)^m = -a_{m-1}(r/s)^{m-1} - \cdots - a_0.
\]
Try to derive a contradiction after multiplying both sides of this equality by \(s^m \).

2. Do problem 5 of §13.3 of Dummit and Foote.

2. Extensions and roots.

3. Do problem 3 of §13.1 of Dummit and Foote. Note that you can use the description \(\mathbf{F}_2(\theta) \) as \(\mathbf{F}_2[x]/(x^3 + x + 1) \).

3. Splitting fields and separability

5. Do problem 2 of §13.4 of Dummit and Foote.

6. Write up the first of the approaches suggested in Dummit and Foote to problem 5 of §13.5.

4. Galois theory and extensions generated by radicals

7. Do problem 8 of §14.3 of Dummit and Foote.

8. Suppose \(E/F \) is a finite separable extension of fields. A Galois closure \(N \) of \(E \) over \(F \) is a minimal normal extension of \(F \) which contains \(E \). Then \(N/F \) is a finite Galois extension. If \(E = F(\alpha) \) for some element \(\alpha \) of \(E \), then \(N \) can be taken to be a splitting field for the irreducible polynomial of \(\alpha \) over \(F \). Given this information, what is the Galois closure \(N \) of the field \(E = \mathbf{Q}(\sqrt{1 + \sqrt{2}}) \) over \(F = \mathbf{Q} \)? In particular, what is the degree \([N : \mathbf{Q}]\)?

10. Do problem 3 of §14.6 of Dummit and Foote. (Hint: You can use the fact that if \(N/F \) is a finite extension of finite fields, then \(N/F \) is Galois and the Galois group \(\text{Gal}(N/F) \) is cyclic. In class we discussed the connection between discriminants and Galois groups for the splitting fields of cubic irreducible polynomials.)