MATH 502: HOMEWORK #1

DUE IN LECTURE THURSDAY, SEPT. 12, 2019.

I. EQUIVALENCE RELATIONS AND THE EUCLIDEAN ALGORITHM.

. Let f: A — B be a surjective map of sets. Prove that the relation t on the elements of
A defined by a 1 b if and only if f(a) = f(b) is an equivalence relation. Show that the
equivalence classes of { are the fibers of f.

. Use the Euclidean algorithm to show that if a = 69 and n = 89 then the residue class [a] of
a mod n defines an element in the group (Z/n)* of invertible residue classes mod n. Find
an integer b such that [b] is the inverse of [a] in (Z/n)*.

II. GROUP ACTIONS AND SOME EXAMPLES OF GROUPS.

. Determine which of the following binary operation are (a) associative, (b) commutative.
i. the operation % on Z defined by a xb =a — b.

ii. the operation * on R defined by a *b=a + b+ ab.

iii. The operation * on Q defined by a % b = %£b.

iv. The operation * on Z x Z defined by (a,b) * (¢,d) = (ad + bc, bd).

v. the operation * on Q — {0} defined by a*b = %.

. Which of the following sets are groups under addition?

i. the set of rational numbers (including ) in lowest terms whose denominators are odd.
ii. the set of rational numbers (including %) in lowest terms whose denominators are even.
iii. the set of rational numbers of absolute value < 1.
iv. the set of rational numbers of absolute value > 1 together with 0.

v. the set of rational numbers with denominators equal to 1 or 2.
vi. the set of rational numbers with denominators equal to 1, 2 or 3.

. Let G={a+b/2€R:a,bec Q}.

i. Show that G is an abelian group under addition.
ii. Show that the set G — {0} of non-zero elements of G is a group under multiplication.
(Hint: Rationalize denominators.)

. Show that if G is a group such that 22 = 1 for all € G then G is abelian.

III. GALOIS GROUPS.

. Let S,, be the symmetric group on n > 1 letters. Define Z[X1,...,X,] to be the set
of polynomials F' = F(Xj,...,X,,) with integer coefficients in the commuting indetermi-
nates Xi,...,X,. For s € S,, define (sF) = (sF)(Xy,...,X,) to be the polynomial
F(Xs1),--, Xgm)). So, for example, if F(Xy,...,X,) = X, then (sF)(Xy,...,X,) =

i. Show that s(F' 4+ G) = sF + sG and s(F - G) = (sF) - (sG) if F,G € Z[Xq,...,X,],
where F'+ G and F' - G are the usual sum and product of polynomials.
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ii. Show that the map S, XZ[X1,...,X,] = Z[X1,...,X,,] defined by (s, F) — sF defines
an action of S, on Z[Xy,...,X,], in the sense that eF' = F when e is the identity
permutation, and (st)(F) = s(tF) for all s,t € S, and F € Z[X;,...,X,]. (Hint: You
could use part (i) to reduce to the case in which F' = X; for some i.)

Suppose f(z) = 2" + a,_12" " + ... + ap is a monic polynomial with integer coefficients
a;. Write f(x) = (x —b1) - (xr — by), where the b; are complex numbers, and assume the
b; are distinct. Let T be the set of all complex numbers of the form F'(by,...,b,) in which
F = F(Xy,..,X,) is an element of Z[X;,...,X,]. Note that T contains the set of all
integers Z, since F(Xi,...,X,) can be a constant polynomial. One can define the Galois
group G(f) of f = f(x) to be the set of all permutations s of {1,...,n} such that there is a
permutation ts of T' such that

ts(F(b1,...,00)) = F(bs(1),- -5 bs(n))

for all F(X1,...,X,) as above. Note that with the action of S, on Z[X}, ..., X,,] defined in
problem # 6, we have
F(bs(l), ey bs(n)) = (SF)(bl, ey bn)
i. Show that the equality t,(F(by,...,bn)) = F(bs(1), - bs(n)) for all F(Xy,...,X,) as
above implies ¢, fixes each integer, i.e. t;(m) = m for m € Z.

ii. Prove that the identity permutation, which fixes each element of {1,...,n}, lies in
G(f).

iii. Suppose that s € G(f), so that a t, as above exists. Show s~! lies in G(f). (Hint:
You want to show that there is a bijection ¢’ : T — T such that for each polynomial
H(X1,...,Xy), one has t'(H (b1, ...,bn)) = H(bs-1(1), -, bs—1(n)). Try setting ¢’ equal
to the inverse of t4, and applying (1) to the polynomial F' = s~!H in the sense of
problem # 7. )

iv. Show that G(f) is a subgroup of the symmetric group S, of all permuations of
{1,...,n}.

Show that the Galois group of f(z) = x? — 2 is of order 2.

IV. ISOMETRY GROUPS.

Show that an isometry f : R™ — R™ which preserves the origin must be linear, i.e. must
be represented by multiplication by some matrix. Deduce that Isom(R™) is generated by
the group T, of translations and the orthogonal group O(n,R).

Let M be a finite non-empty subset of the Euclidean plane R2. Give M the Euclidean
metric dps. Show that an element f of Isom(M,dps) of order greater than 2 must be the
restriction of a rotation about some point of R?. (Hint: Show there is an m € M so m,
f(m) and f?(m) are distinct. Consider the possibilities for f3(m). To what extent is f
determined by its action on m, f(m) and f2(m)?)

Bonus Problem (optional): With the notations of problem #11, describe the isomorphism
classes of groups which can arise as Isom(M,dys) for some finite non-empty set of points
M in R2.



