
MATH 502: HOMEWORK #1

DUE IN LECTURE THURSDAY, SEPT. 12, 2019.

I. Equivalence relations and the Euclidean algorithm.

1. Let f : A → B be a surjective map of sets. Prove that the relation † on the elements of
A defined by a † b if and only if f(a) = f(b) is an equivalence relation. Show that the
equivalence classes of † are the fibers of f .

2. Use the Euclidean algorithm to show that if a = 69 and n = 89 then the residue class [a] of
a mod n defines an element in the group (Z/n)∗ of invertible residue classes mod n. Find
an integer b such that [b] is the inverse of [a] in (Z/n)∗.

II. Group actions and some examples of groups.

3. Determine which of the following binary operation are (a) associative, (b) commutative.
i. the operation ∗ on Z defined by a ∗ b = a− b.

ii. the operation ∗ on R defined by a ∗ b = a + b + ab.
iii. The operation ∗ on Q defined by a ∗ b = a+b

5 .
iv. The operation ∗ on Z× Z defined by (a, b) ∗ (c, d) = (ad + bc, bd).
v. the operation ∗ on Q− {0} defined by a ∗ b = a

b .

4. Which of the following sets are groups under addition?

i. the set of rational numbers (including 0
1 ) in lowest terms whose denominators are odd.

ii. the set of rational numbers (including 0
1 ) in lowest terms whose denominators are even.

iii. the set of rational numbers of absolute value ≤ 1.
iv. the set of rational numbers of absolute value ≥ 1 together with 0.
v. the set of rational numbers with denominators equal to 1 or 2.
vi. the set of rational numbers with denominators equal to 1, 2 or 3.

5. Let G = {a + b
√

2 ∈ R : a, b ∈ Q}.
i. Show that G is an abelian group under addition.

ii. Show that the set G− {0} of non-zero elements of G is a group under multiplication.
(Hint: Rationalize denominators.)

6. Show that if G is a group such that x2 = 1 for all x ∈ G then G is abelian.

III. Galois groups.

7. Let Sn be the symmetric group on n ≥ 1 letters. Define Z[X1, . . . , Xn] to be the set
of polynomials F = F (X1, . . . , Xn) with integer coefficients in the commuting indetermi-
nates X1, . . . , Xn. For s ∈ Sn, define (sF ) = (sF )(X1, . . . , Xn) to be the polynomial
F (Xs(1), . . . , Xs(n)). So, for example, if F (X1, . . . , Xn) = Xi, then (sF )(X1, . . . , Xn) =
Xs(i).

i. Show that s(F + G) = sF + sG and s(F · G) = (sF ) · (sG) if F,G ∈ Z[X1, . . . , Xn],
where F + G and F ·G are the usual sum and product of polynomials.
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ii. Show that the map Sn×Z[X1, . . . , Xn]→ Z[X1, . . . , Xn] defined by (s, F )→ sF defines
an action of Sn on Z[X1, . . . , Xn], in the sense that eF = F when e is the identity
permutation, and (st)(F ) = s(tF ) for all s, t ∈ Sn and F ∈ Z[X1, . . . , Xn]. (Hint: You
could use part (i) to reduce to the case in which F = Xi for some i.)

8. Suppose f(x) = xn + an−1x
n−1 + ... + a0 is a monic polynomial with integer coefficients

ai. Write f(x) = (x − b1) · · · (x − bn), where the bi are complex numbers, and assume the
bi are distinct. Let T be the set of all complex numbers of the form F (b1, ..., bn) in which
F = F (X1, ..., Xn) is an element of Z[X1, . . . , Xn]. Note that T contains the set of all
integers Z, since F (X1, ..., Xn) can be a constant polynomial. One can define the Galois
group G(f) of f = f(x) to be the set of all permutations s of {1, ..., n} such that there is a
permutation ts of T such that

(1) ts(F (b1, . . . , bn)) = F (bs(1), . . . , bs(n))

for all F (X1, ..., Xn) as above. Note that with the action of Sn on Z[X1, . . . , Xn] defined in
problem # 6, we have

(2) F (bs(1), . . . , bs(n)) = (sF )(b1, . . . , bn)

i. Show that the equality ts(F (b1, ..., bn)) = F (bs(1), ..., bs(n)) for all F (X1, ..., Xn) as
above implies ts fixes each integer, i.e. ts(m) = m for m ∈ Z.

ii. Prove that the identity permutation, which fixes each element of {1, . . . , n}, lies in
G(f).

iii. Suppose that s ∈ G(f), so that a ts as above exists. Show s−1 lies in G(f). (Hint:
You want to show that there is a bijection t′ : T → T such that for each polynomial
H(X1, . . . , Xn), one has t′(H(b1, ..., bn)) = H(bs−1(1), ..., bs−1(n)). Try setting t′ equal

to the inverse of ts, and applying (1) to the polynomial F = s−1H in the sense of
problem # 7. )

iv. Show that G(f) is a subgroup of the symmetric group Sn of all permuations of
{1, . . . , n}.

9. Show that the Galois group of f(x) = x2 − 2 is of order 2.

IV. Isometry groups.

10. Show that an isometry f : Rn → Rn which preserves the origin must be linear, i.e. must
be represented by multiplication by some matrix. Deduce that Isom(Rn) is generated by
the group Tn of translations and the orthogonal group O(n,R).

11. Let M be a finite non-empty subset of the Euclidean plane R2. Give M the Euclidean
metric dM . Show that an element f of Isom(M,dM ) of order greater than 2 must be the
restriction of a rotation about some point of R2. (Hint: Show there is an m ∈ M so m,
f(m) and f2(m) are distinct. Consider the possibilities for f3(m). To what extent is f
determined by its action on m, f(m) and f2(m)?)

12. Bonus Problem (optional): With the notations of problem #11, describe the isomorphism
classes of groups which can arise as Isom(M,dM ) for some finite non-empty set of points
M in R2.


