
MATH 502, PROBLEM SET 2, REVISED

DUE IN MATEI’S MAILBOX IN THE MATH OFFICE BY NOON ON MONDAY, SEPT. 30

A. Transitive permutations groups, blocks and conjugations in Sn.

1. Suppose G is a group acting on a finite non-empty set A. Suppose the action of G on A is
transitive, in the sense that given a, b ∈ A, there is some g ∈ G such that a = g(b). A block
of A is a non-empty subset B of A such that for all g ∈ G, either g(B) = {g(b) : b ∈ B}
equals B or g(B) and B are disjoint.

a. Show that if g1(B), . . . , gm(B) are the distinct images of a block B of A under the
elements of G then A is the disjoint union g1(B)

∐
g2(B)

∐
· · ·

∐
gm(B) of the gi(B).

b. The (transitive) action of G on A is called primitive if the only blocks for this action
are either all of A or one element sets. Show that the action of the symmetric group
G = S4 on A = {1, 2, 3, 4} is primitive.

c. In class we talked about the action of the dihedral group D2n of order 2n by isometries
on a regular n-gon in the Euclidean plane R2. Show that when n = 4, the action of
D8 on the four vertices of a square is not primitive.

2. Let g and f be elements of the symmetric group Sn. Suppose g is a product of cycles, which
need not be disjoint:

g = (a1, a2, . . . , am) · (b1, b2, . . . , bt) · · · .
Prove that

fgf−1 = (f(a1), f(a2), . . . , f(am)) · (f(b1), · · · , f(bt)) · · ·
results from applying f to each of the entries in the product for g. (Hint: If g1, g2 ∈ Sn
then f(g1g2)f−1 = fg1f

−1fg2f
−1.)

B. A subgroup of the Rubik cube group

Suppose we number the vertices of two adjoining faces of a Rubik’s cube in this way:

1 2 5

4 3 6

Here one face has vertices {1, 2, 3, 4} and the other has vertices {2, 5, 6, 3}. This exercise has to
do with analyzing the subgroup G of the permutation group S6 on the vertices which is generated
by clockwise twists around the two faces. These twists have cycle descriptions A = (1, 2, 3, 4) and
B = (2, 5, 6, 3), so that G has generators A and B. One byproduct is going to be a way to bring all
the vertices of the cube back to their original positions.

3. Show that C = AB has order 5 and D = ABA has order 6, and write down the cycle
descriptions of these as permutations.

4. Find an element T of G which is a power of D such that β = TCT−1 is a 5-cycle which
leaves 1 fixed. (Hint: First find an element of {1, . . . , 6} which C leaves fixed. Then use the
fact that some power of D sends this element to 1, and use problem #2).
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5. Suppose h is an arbitrary element of G. Show that there are integers 0 ≤ ` ≤ 5, 0 ≤ q ≤ 4
and 0 ≤ α ≤ 3 such that Bα · βq ·D` · h fixes each of 1, 4 and 3. (Hint: First use a power
of D to bring h(1) back to 1, and then continue.)

6. Conversely, given distinct elements i, j, k of {1, 2, 3, 4, 5, 6}, show that there is an h ∈ G of
the form (Bα · βq ·D`)−1 such that h(1) = i, h(4) = j and h(3) = k. This shows G is triply
transitive on {1, 2, 3, 4, 5, 6}. (Hint: Run the algorithm in part (5) in reverse.)

7. With the notation of part (5), the element Bα · βq ·D` · h is in the subgroup H of G which
leaves each of 1, 4 and 3 fixed. Define the following subset T of G:

(0.1) T = {D−` · β−q ·B−α : 0 ≤ ` ≤ 5, 0 ≤ q ≤ 4, 0 ≤ α ≤ 3}

Show that T contains A = (1, 2, 3, 4) and that T has exactly 120 elements. Assuming that
T is a group, show that H is trivial and G = T . (Proving that T is a group is an extra
credit problem below.)

Hints: Part (5) is really an algorithm for producing `, q and α for a given h. Apply this
algorithm to h = A = (1, 2, 3, 4) and check that in fact, A is exactly equal to the resulting
D−` · β−q ·B−α. To count the number of elements of T , it is enough to show that

(0.2) D−` · β−q ·B−α = D−`
′
· β−q

′
·B−α

′

implies D−` = D−`
′
, β−q = β−q

′
and B−α = B−α

′
. To check this, first consider where each

side of (0.2) sends 1 in order to prove D−` = D−`
′
. Then multiply each side by D` = D`′

and consider where the results send 4, etc.)

8. Show that G is not contained in the stabilizer of any element of {1, 2, 3, 4, 5, 6}. Since
#S6 = 720 = 6 · #G, the set S6/G of left cosets gG of G in S6 has 6 elements. Let S6

act on these cosets on the left. Show that this gives an isomorphism τ : S6 → Perm(S6/G)
which sends G isomorphically to the subgroup of Perm(S6/G) which fixes the coset G. You
can use without proof the fact that any homomorphism from S6 to another group is either
injective or has image of order 1 or 2; we are going to prove this later when we consider
simple groups. Conclude that τ gives an isomorphism between G and S5.

9. Label the cosets S6/G by {1, 2, 3, 4, 5, 6} in some way, and identify Perm(S6/G) with S6

by this labeling. Show the isomorphism τ in part (8) cannot be an inner automorphsm,
i.e. there is no element σ ∈ S6 such that τ(g) = σgσ−1 for all g ∈ S6. Thus τ is an outer
automorphism of S6. It is remarkable that the existence of this outer automorphism can be
proved using a Rubik’s cube! (Hint: Show that if τ were an inner automorphism, then the
fact that τ(G) fixes some element of S6/G would imply that G has to fix some element of
{1, . . . , 6}, which is not true.)

1. Extra Credit Problems

10. Show that the set T defined in (0.1) is a group.

Hints: First show that the elements β and B generate a group Γ of order 20 in which β
generates a normal 5-Sylow subgroup. For this it is enough to show that BβB−1 is a power
of β. Argue that this proves T is taken to itself by multiplication on the right by either β or
B. Show that to prove T is a group, it is then enough to show that right multiplication by D
takes T to itself. To show this reduce to checking that for i ∈ {1, 2, 3, 4, 5} and g ∈ {β,B},
there is an integer j(i, g) and an element g′ ∈ Γ such that gDi = Dj(i,g)g′. To find j(i, g)
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and g′, you need to use the algorithm discussed in Problem 7 a total of 10 times, each time
checking that you indeed get a g′ in Γ.)

11. Show that the allowed rotations of all the faces of a Rubik’s cube generate the full permu-
tation group S8 of the corners of the cube.

Hints: First argue that it is enough to prove that if we allow rotations about all of the faces,
we can produce an arbitrary permutation vertices numbered 1, 2, 3, 4, 5, 6 while holding the
remaining two vertices 7 and 8 fixed. Problem #7 shows that if we only allow rotations
about the two faces containing vertices 1, 2, 3, 4, 5, 6 we can only achieve the permutations
in the group G. Show that if we allow rotations about all of the faces, we can find a
permutation σ which fixes each of 7 and 8 and whose actions on the vertices {1, 2, 3, 4, 5, 6}
is not in G. One way to come up with such a σ is described on pages 13 and 14 of
https://math.berkeley.edu/̃ hutching/rubik.pdf ; it is useful to know that the group H in
problem #7 is trivial. To finish the argument using G and σ, you can use that the only
normal subgroups of S6 are {e}, A6 and S6.


