1. Algorithms for carrying out the fundamental theorem

In class we talked about algorithms for taking a given free finitely generated module M for a P.I.D. R together with a set of generators for a submodule N of M and producing a basis $\{y_i\}_{i=1}^m$ for M over R such that N has basis $\{a_i y_i\}_{i=1}^n$ for some $1 \leq n \leq m$ and some non-zero elements $a_1, \ldots, a_n \in R$ such that $a_1 | a_2 | \cdots | a_n$. This exercise has to do with carrying out this algorithm

1.1 Suppose $R = \mathbb{Z}$ and that $M = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \oplus \mathbb{Z}e_3$ for the basis $\{e_1, e_2, e_3\}$ of M. Suppose that N is generated by q_1, \ldots, q_4 where $q_i = \sum_{j=1}^{3} q_{i,j} e_j$ and $q_{i,j} = i^j$. In other words, $A = (q_{i,j})$ is the 4×3 matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 8 \\ 2 & 9 & 27 \\ 4 & 16 & 64 \end{pmatrix}.$$

Write down a basis $\{y_i\}_{i=1}^3$ and a set of invariant factors $\{a_i\}_{i=1}^3$ for N as above. You should express each y_i as an explicit integral combination of the basis elements $\{e_1, e_2, e_3\}$.

1.2 In class we talked about how if R is Euclidean we can use the Euclidean algorithm for R to carry out computations of the above kind. Suppose now only that R is a P.I.D.. Suppose $\alpha, \beta \in R$ are not both 0. Suppose we have an oracle which tells us how to find elements $\lambda, \gamma \in R$ such that

$$\lambda \alpha + \gamma \beta = d$$

where d is a g.c.d. for α and β in R. Prove that $\tau = \alpha/d$ and $z = \beta/d$ are in R, and that

$$\begin{pmatrix} \lambda & \gamma \\ -z & \tau \end{pmatrix}$$

is an invertible matrix with inverse

$$\begin{pmatrix} \tau & -\gamma \\ z & \lambda \end{pmatrix}$$

Show that

$$\begin{pmatrix} \lambda & \gamma \\ -z & \tau \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$$

and

$$\begin{pmatrix} \alpha & \beta \end{pmatrix} \cdot \begin{pmatrix} \lambda & -z \\ \gamma & \tau \end{pmatrix} = \begin{pmatrix} d & 0 \end{pmatrix}$$

1.3 Suppose $q = (q_{i,j})_{i,j}$ is a matrix with elements in R, and call $r_i = (q_{i,j})_j$ the i^{th} row. Show that if $i \neq j$, we can make a new kind of row operation on matrices such as q by replacing r_i by $\lambda r_i + \gamma r_j$ and r_j by $-z r_i + \tau r_j$ and by leaving the other rows alone. Prove that this operation is invertible by another operation of the same kind using that (1.2) is an invertible matrix. Explain how you would make similar new column operations using (1.4).
1.4 Suppose now that we are given a finitely generated free R-module $M = \oplus_{i=1}^{m} Re_i$ together with an explicit finite set of generators $q_i = \sum_{j=1}^{m} q_{i,j} e_j$ for a submodule N of M. Explain how you would be able to use an oracle of the above kind along with the new row and column operations in the last two problems to produce $\{y_i\}$ and $\{a_i\}$ of the kind described at the beginning of this section.

2. **The rational canonical form**

This section has to do with carrying out the algorithm for how to conjugate a matrix into rational canonical form which was described in class. We’ll use this on the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}. $$

over the field $F = \mathbb{Z}/2$ which we talked about in class. Define

$$M = xI_{3,3} - A = \begin{pmatrix} x-1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x-1 \end{pmatrix}. $$

2.1 Let V the $F[x]$ module which is the three dimensional F-vector space

$$V = Fb_1 \oplus Fb_2 \oplus Fb_3$$

on which x acts as multiplication by the matrix A when we identify

$$a_1b_1 + a_2b_2 + a_3b_3 \quad \text{for} \quad a_1, a_2, a_3 \in F$$

with the column vector

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}. $$

Let

$$F[x]^3 = F[x]c_1 \oplus F[x]c_2 \oplus F[x]c_3$$

be the free rank 3 $F[x]$-module with basis $\{c_1, c_2, c_3\}$. Check that there is an $F[x]$-module isomorphism

$$V \rightarrow \frac{F[x]^3}{MF[x]^3}$$

defined by

$$a_1b_1 + a_2b_2 + a_3b_3 \rightarrow [a_1c_1 + a_2c_2 + a_3c_3]$$

where $[v]$ is the image of $v \in F[x]^3$ in $\frac{F[x]^3}{MF[x]^3}$. This is the inverse of the $F[x]$-module isomorphism we discussed in class.

Hints: Start with the surjective $F[x]$ module homomorphism $\psi : F[x]^3 \rightarrow V$ for which $c_i \rightarrow b_i$ for $i = 1, 2, 3$. Show that

$$MF[x]^3 = \{Mv : v \in F[x]^3\}$$

is in the kernel of ψ, and deduce that it is enough to prove that

$$\dim_F\left(\frac{F[x]^3}{MF[x]^3}\right) \leq 3.$$
2.3 In class we discussed the fact that left multiplication by C

Show that if $\{v\}$ be the image of $y \in F[x]^3$ in $F[x]^3/\langle \langle x - 1 \rangle \rangle$ relative to this basis is the rational canonical form matrix associated to the invariant factors $a_1(x) = x - 1$ and $a_2(x) = x(x - 1)$.

2.3 In class we discussed the fact that left multiplication by C^{-1} gives an $F[x]$-module isomorphism

defined by

where $[y]$ is the image of $y \in F[x]^3$ in $F[x]^3/\langle \langle x - 1 \rangle \rangle$. Find $C^{-1} \in \text{Mat}_3(F[x])$ by using the factorization of C into a product of elementary matrices. Compute the vectors $y_1 = C^{-1}v_1 \quad y_2 = C^{-1}v_2 \quad y_3 = C^{-1}v_3$
as column vectors with entries in \(F[x] \).

2.4 Using (2.6) and the expressions you found for \(y_1, y_2 \) and \(y_3 \) in part 3 of this problem, find column vectors \(d_1, d_2, d_3 \) with entries in \(F \) such that
\[
[d_1] = [y_1], \quad [d_2] = [y_2], \quad [d_3] = [y_3]
\]
in \(\frac{F[x]^3}{MF[x]^3} \).

2.5 Part 1 of this problem gives an \(F[x] \)-module isomorphism \(V \to \frac{F[x]^3}{MF[x]^3} \) sending \(d_i \) to \([d_i]\) when \(d_1, d_2, d_3 \) are as in part 4 of this problem. Show that if we use the basis \(E = \{d_1, d_2, d_3\} \) of \(V = F^3 \) then the matrix \(\text{Mat}^E_E(x) \) of multiplication by \(x \) on \(V \) relative to this basis is the rational canonical form \(C(x) \) of \(x \). Conclude that \(\text{Mat}^E_E(x) \) is the rational canonical form of the matrix \(A \) we started with, and
\[
\text{Mat}^E_E(x) = C(x) = \text{Mat}^E_B(I) \cdot A \cdot \text{Mat}^E_B(I)^{-1}
\]
where here \(I \) stands for the identity map. Use the description of \(d_1, d_2, d_3 \) as column vectors to write down the \(\text{Mat}^E_B(I) \) and verify that conjugation by this matrix carries \(A \) to a matrix in rational canonical form.

3. Jordan canonical forms

3.1 Do problem 23 on page 501 of Dummit and Foote.

3.2 Do problem 39 on page 502 of Dummit and Foote.

4. Gauss Jordan elimination

4.2 Do problem 27 on page 427 of Dummit and Foote.