MATH 503: HOMEWORK #4A

DUE MARCH 31 IN YING ZONG’S MAILBOX

1. Tensor products

1.1 Do exercise # 2 of §10.4 of Dummit and Foote.
1.2 Do problem # 11 of §10.4 of Dummit and Foote.
1.3 Do problem # 16 of §10.4 of Dummit and Foote.
1.4 Do problem # 26 of §10.4 of Dummit and Foote. (See proposition 21 of §10.4 for the definition of the algebra structure of \(S \otimes R[x] \).)

2. Dehn invariants.

A polyhedron \(P \) in \(\mathbb{R}^3 \) is a bounded set which is the closure of its interior, and whose boundary is the union of finitely many flat, finite-sided polygonal faces. Faces should meet only along their edges, with each edge belonging to exactly two faces. Suppose \(e \) is an edge, and that \(F_1 \) and \(F_2 \) are the faces of \(P \) which have \(e \) in common.

2.1 Pick a point \(x \) on \(e \), and let \(n_1 \) and \(n_2 \) be the outward facing normals to \(F_1 \) and \(F_2 \) at \(x \). Write down a formula for the interior dihedral angle \(\theta(e) \) between \(F_1 \) and \(F_2 \) using the angle between \(n_1 \) and \(n_2 \). (The interior dihedral angle that the angle through which one has to rotate \(F_1 \) about \(e \) in the direction of the interior of \(P \) in order to move \(F_1 \) to \(F_2 \).) This leads to a way to compute \(\theta(e) \) using dot products.

2.2 The Dehn invariant \(D(P) \) of \(P \) is the element

\[
\sum_e l(e) \otimes \theta(e)
\]

of \(\mathbb{R} \otimes_{\mathbb{Q}} (\mathbb{R}/\mathbb{Q}\pi) \), where the sum is over all the edges \(e \) of \(P \) and \(l(e) \) is the length of \(e \). Show that

\[
D(P) = D(P_1) + D(P_2)
\]

if \(P_1 \) and \(P_2 \) are the polyhedra which result from subdividing \(P \) into two pieces by cutting \(P \) with a plane. (Hint: Consider the contribution to \(D(P_1) + D(P_2) \) from (i) the new edges which are produced by this subdivision, (ii) edges \(e \) of \(P \) which lie on the subdividing plane, and (ii) edges \(e \) of \(P \) which are cut by the subdividing plane.)

2.3 Suppose \(a, b \in \mathbb{R} \) and \([b] \) is the image of \(b \) in \(\mathbb{R}/(\mathbb{Q}\pi) \). Show that if \(a \neq 0 \) and \([b] \neq 0 \), then \(a \otimes [b] \neq 0 \) in \(\mathbb{R} \otimes_{\mathbb{Q}} (\mathbb{R}/\mathbb{Q}\pi) \). (Hint: Choose a basis for \(\mathbb{R} \) as a \(\mathbb{Q} \)-vector space which contains \(a \).)

2.4 Let \(P_1 \) be the tetrahedron in \(\mathbb{R}^3 \) which has vertices at the points \((0, 0, 0), (1, 0, 0), (1, 1, 0)\) and \((1, 1, 1)\). Show that the Dehn invariant of \(P_1 \) is trivial.

2.5 Let \(P_2 \) be the tetrahedron which has vertices \((0, 0, 0), (1, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\). Show that the Dehn invariant \(D(P_2) \) is

\[
3\sqrt{2} \otimes [\gamma\pi]
\]

where

\[
\gamma\pi = \arccos\left(\frac{1}{\sqrt{3}}\right).
\]
Deduce using parts (2) and (3) of this problem that P_1 and P_2 are polyhedra of equal volume which are not scissors congruent once one shows $γ$ is not rational.

2.6 Show that $ζ = e^{γπ\sqrt{-1}}$ satisfies the equation

$$ζ + ζ^{-1} = \frac{2}{\sqrt{3}}.$$

Deduce from this that

$$ζ = \frac{1 ± \sqrt{-2}}{\sqrt{3}}.$$

Show that if $γ$ is rational, then $ζ^m = 1$ for some integer $m > 0$. Deduce from this that

$$(1 + \sqrt{-2})^m$$

is real if $γ$ is rational.

2.7 Show that there is no positive integer m' such that $(1 + \sqrt{-2})^{m'}$ is real. This will complete Dehn’s proof that there are polyhedra in \mathbb{R}^3 which have the same volume but which are not scissors congruent. (Hint: Write $(1 + \sqrt{-2})^{m'} = a(m') + b(m')\sqrt{-2}$ for some integers $a(m')$ and $b(m')$, and use induction to consider what $a(m')$ and $b(m')$ can be modulo 3.)

The following problems are optional; they’re for extra credit.

3. QUANTUM COMPUTATION AND TENSOR PRODUCTS.

The state space of a spin one-half particle is a two dimensional complex vector space

$$\mathbb{C}^2 = \mathbb{C}v_0 ⊕ \mathbb{C}v_1$$

in which v_0 and v_1 are the base states spin up and spin down. The particle can be in any combination of base states for which $|α_0|^2 + |α_1|^2 = 1$. If the particle is observed, it will be seen in state v_i with probability $|α_i|^2$. Define a Hermitian inner product on \mathbb{C}^2 by

$$⟨av_0 + bv_1, cv_0 + dv_1⟩ = a\overline{c} + b\overline{d}.$$

This is Hermitian in the sense that

$$⟨v, v'⟩ = ⟨v', v⟩$$

for all $v, v' ∈ \mathbb{C}^2$.

3.1 Show that a \mathbb{C}-linear transformation sends each allowable state (3.1) to another allowable state if and only it preserves $⟨ , ⟩$ in the sense that

$$⟨F(v), F(v')⟩ = ⟨v, v'⟩$$

for all v and v'. Show that this is equivalent to the statement that if M is the matrix of F relative to the basis $\{v_0, v_1\}$, then $M · M^†$ is the identity matrix, where $M^†$ is the complex conjugate of the transpose of M. Under these conditions, one says F and M are unitary.

3.2 The state space of n spin one particles is the tensor product

$$S = S_1 ⊗_\mathbb{C} \cdots ⊗_\mathbb{C} S_n = (\mathbb{C}^2)^⊗n$$

of their individual state spaces S_1, \ldots, S_n. Show this has a basis B consisting of tensors

$$b = b_1 ⊗ \cdots ⊗ b_n$$

in which each b_i is one of the two base states for particle i. Define a Hermitian inner product on S by

$$⟨\sum_b a_b b, \sum_{b'} c_{b'} b'⟩ = \sum_b a_b \overline{c_{b'}}$$

where b and b' run over all pairs of elements of B. The allowable states $v = \sum_b a_b b$ are those for which

$$⟨v, v⟩ = \sum_b |a_b|^2 = 1$$
Then \(|a_b|^2\) is the probability of observing the \(n\)-particles in the combination of base states represented by \(b\). The allowable transformations of \(S\) are the \(\mathbb{C}\)-linear maps \(F : S \to S\) which preserve \(\langle , \rangle\), i.e. the unitary transformations. Show that if \(\psi_j : S_j \to S_j\) is a unitary transformation for each \(j\), then the tensor product

\[
F = \psi_1 \otimes \cdots \otimes \psi_n
\]

is unitary for \(S\).

Comment: A quantum gate is an \(F\) as in (3.2) in which all but one or two of the \(\psi_j\) are the identity map. Such a gate then acts only on one or two of the spin one particles at a time. A basic problem is to build up from compositions of such gates interesting unitary transformations. Such compositions should take some initial state to a final state which when observed will be seen with high probability to be a base state from which one can read off the answer to some problem of interest, e.g. how to factor a large integer.