MATH 503: HOMEWORK #6A

DUE AT THE FINAL EXAM ON MONDAY, MAY 5

1. Quadratic chains of fields and geometric constructions

1. Suppose \(l(x) = x^m + a_{m-1}x^{m-1} + \cdots + a_0 \) is a polynomial in \(x \) with coefficients \(a_i \) in \(\mathbb{Z} \). Show that any root of \(l(x) \) in \(\mathbb{Q} \) must lie in \(\mathbb{Z} \). (Hint: Let \(r/s \) be a root in which \(r \) and \(s \) are coprime integers and \(s > 1 \). Let \(l \) be a prime dividing \(s \) and suppose \(l^m \) is the exact power of \(l \) dividing \(s \). Expand the equality \(s^m f(r/s) = 0 \) and reduce mod \(l \) to get a contradiction.)

2. The object of this exercise is to show that there is a degree 4 extension \(K \) of \(\mathbb{Q} \) which does not contain a degree 2 extension of \(\mathbb{Q} \). This shows not every extension of \(\mathbb{Q} \) which has two-power degree is a quadratic chain.

 a. Suppose \(g(y) = y^4 + py^2 + qy + r \) is a fourth degree irreducible polynomial in \(y \) with \(p, q, r \in \mathbb{Q} \). Let the complex roots of \(g(y) \) be \(\alpha_1, \alpha_2, \alpha_3 \) and \(\alpha_4 \). Define

 \[
 \theta_1 = (\alpha_1 + \alpha_2) \cdot (\alpha_3 + \alpha_4) \\
 \theta_2 = (\alpha_1 + \alpha_3) \cdot (\alpha_2 + \alpha_4) \\
 \theta_3 = (\alpha_1 + \alpha_4) \cdot (\alpha_2 + \alpha_3) \\
 h(x) = (x - \theta_1) \cdot (x - \theta_2) \cdot (x - \theta_3) = x^3 + a_2x^2 + a_1x + a_0
 \]

 where \(a_0, a_1 \) and \(a_2 \) are complex numbers. Show that \(a_2 = -2p \).

 Hint: Write down a formula for \(a_2 \) in terms of the \(\theta_i \), and then express this in terms of the \(\alpha_i \). Then use

 \[
 g(y) = \prod_{i=1}^{4} (y - \alpha_i) = y^4 + py^2 + qy + r
 \]

 b. The polynomial \(h(x) \) is called the cubic resolvent of \(g(y) \). By calculations similar to those in part (a), which you don’t have to do, one can check that

 \[
 h(x) = x^3 - 2px^2 + (p^2 - 4r)x + q^2.
 \]

 Show that if \(h(x) \) is irreducible in \(\mathbb{Q}[x] \), then the extension \(K = \mathbb{Q}(\alpha_1) \) is a degree 4 extension of \(\mathbb{Q} \) which does not contain a quadratic extension of \(\mathbb{Q} \). (Hint: If \(K \) contains a quadratic subfield, then \(K/\mathbb{Q} \) is a quadratic chain. In class we showed that this implies \(L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \) is a quadratic chain over \(\mathbb{Q} \). Consider the degree of \(L \) over \(\mathbb{Q} \) using the subfield \(\mathbb{Q}(\theta_1) \) of \(L \).)

 c. If \(g(y) = y^4 + 2y - 2 \) show that both \(g(y) \) and \(h(x) \) are irreducible. (Hint: To handle \(h(x) \), use exercise #1 above.)

3. Do problem 5 of §13.3 of Dummit and Foote.
2. Extensions and roots.

4. Do problem 3 of §13.1 of Dummit and Foote. Note that you can use the description $\mathbb{F}_2(\theta)$ as $\mathbb{F}_2[x]/(x^3 + x + 1)$.

5. Do problem 8 of §13.2 of Dummit and Foote.

3. Splitting fields and separability

7. Write up both of the approaches suggested in Dummit and Foote to problem 5 of §13.5.

4. Galois theory and extensions generated by radicals

8. Do problem 8 of §14.3 of Dummit and Foote.

9. Do problem 1 of §14.4 of Dummit and Foote. Can you describe the Galois group over \mathbb{Q} of the Galois closure?

11. Do problem 3 of §14.7 of Dummit and Foote.