1. EQUIVALENCE RELATIONS AND THE EUCLIDEAN ALGORITHM.

1. Let \(f : A \rightarrow B \) be a surjective map of sets. Prove that the relation \(\dagger \) on the elements of \(A \) defined by \(a \dagger b \) if and only if \(f(a) = f(b) \) is an equivalence relation. Show that the equivalence classes of \(\dagger \) are the fibers of \(f \).

2. Use the Euclidean algorithm to show that if \(a = 69 \) and \(n = 89 \) then the residue class \([a]\) of \(a \mod n \) defines an element in the group \((\mathbb{Z}/n)^*\) of invertible residue classes mod \(n \). Find an integer \(b \) such that \([b]\) is the inverse of \([a]\) in \((\mathbb{Z}/n)^*\).

2. GROUP ACTIONS AND SOME EXAMPLES OF GROUPS.

3. Determine which of the following binary operation are (a) associative, (b) commutative.
 i. the operation \(* \) on \(\mathbb{Z} \) defined by \(a * b = a - b \).
 ii. the operation \(* \) on \(\mathbb{R} \) defined by \(a * b = a + b + ab \).
 iii. The operation \(* \) on \(\mathbb{Q} \) defined by \(a * b = \frac{a + b}{5} \).
 iv. The operation \(* \) on \(\mathbb{Z} \times \mathbb{Z} \) defined by \((a, b) * (c, d) = (ad + bc, bd)\).
 v. the operation \(* \) on \(\mathbb{Q} - \{0\} \) defined by \(a * b = \frac{a}{b} \).

4. Which of the following sets are groups under addition?
 i. the set of rational numbers (including \(\frac{0}{1} \)) in lowest terms whose denominators are odd.
 ii. the set of rational numbers (including \(\frac{0}{1} \)) in lowest terms whose denominators are even.
 iii. the set of rational numbers of absolute value \(\leq 1 \).
 iv. the set of rational numbers of absolute value \(\geq 1 \) together with 0.
 v. the set of rational numbers with denominators equal to 1 or 2.
 vi. the set of rational numbers with denominators equal to 1, 2 or 3.

5. Let \(G = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\} \).
 i. Show that \(G \) is an abelian group under addition.
 ii. Show that the set \(G - \{0\} \) of non-zero elements of \(G \) is a group under multiplication. (Hint: Rationalize denominators.)

6. Show that if \(G \) is a group such that \(x^2 = 1 \) for all \(x \in G \) then \(G \) is abelian.

3. GALOIS GROUPS.

7. Let \(S_n \) be the symmetric group on \(n \geq 1 \) letters. Define \(\mathbb{Z}[X_1, \ldots, X_n] \) to be the set of polynomials \(F = F(X_1, \ldots, X_n) \) with integer coefficients in the commuting indeterminates \(X_1, \ldots, X_n \). For \(s \in S_n \), define \((sF) = (sF)(X_1, \ldots, X_n) \) to be the polynomial \(F(X_{s(1)}, \ldots, X_{s(n)}) \). So, for example, if \(F(X_1, \ldots, X_n) = X_i \), then \((sF)(X_1, \ldots, X_n) = X_{s(i)}\).
 i. Show that \((F + G) = sF + sG\) and \((F \cdot G) = (sF) \cdot (sG)\) if \(F, G \in \mathbb{Z}[X_1, \ldots, X_n] \), where \(F + G \) and \(F \cdot G \) are the usual sum and product of polynomials.
ii. Show that the map $S_n \times \mathbb{Z}[X_1, \ldots, X_n] \to \mathbb{Z}[X_1, \ldots, X_n]$ defined by $(s, F) \to sF$ defines
an action of S_n on $\mathbb{Z}[X_1, \ldots, X_n]$, in the sense that $eF = F$ when e is the identity
permutation, and $(st)(F) = s(tF)$ for all $s, t \in S_n$ and $F \in \mathbb{Z}[X_1, \ldots, X_n]$. (Hint: You
could use part (i) to reduce to the case in which $F = X_i$ for some i.)

8. Suppose $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ is a monic polynomial with integer coefficients
a_i. Write $f(x) = (x - b_1) \cdots (x - b_n)$, where the b_i are complex numbers, and assume the
b_i are distinct. Let T be the set of all complex numbers of the form $F(b_1, \ldots, b_n)$ in which
$F = F(X_1, \ldots, X_n)$ is an element of $\mathbb{Z}[X_1, \ldots, X_n]$. Note that T contains the set of all
integers \mathbb{Z}, since $F(X_1, \ldots, X_n)$ can be a constant polynomial. One can define the Galois
group $G(f)$ of $f = f(x)$ to be the set of all permutations s of $\{1, \ldots, n\}$ such that there is a
permutation t_s of T such that

\[
t_s(F(b_1, \ldots, b_n)) = F(b_{s(1)}, \ldots, b_{s(n)})
\]

for all $F(X_1, \ldots, X_n)$ as above. Note that with the action of S_n on $\mathbb{Z}[X_1, \ldots, X_n]$ defined in
problem # 6, we have

\[
F(b_{s(1)}, \ldots, b_{s(n)}) = (sF)(b_1, \ldots, b_n)
\]

i. Show that the equality $t_s(F(b_1, \ldots, b_n)) = F(b_{s(1)}, \ldots, b_{s(n)})$ for all $F(X_1, \ldots, X_n)$ as
above implies t_s fixes each integer, i.e. $t_s(m) = m$ for $m \in \mathbb{Z}$.

ii. Prove that the identity permutation, which fixes each element of $\{1, \ldots, n\}$, lies in
$G(f)$.

iii. Suppose that $s \in G(f)$, so that a t_s as above exists. Show s^{-1} lies in $G(f)$. (Hint: You
want to show that there is a bijection $t' : T \to T$ such that for each polynomial
$H(X_1, \ldots, X_n)$, one has $t'(H(b_1, \ldots, b_n)) = H(b_{s^{-1}(1)}, \ldots, b_{s^{-1}(n)})$. Try setting t' equal
to the inverse of t_s, and applying (3.1) to the polynomial $F = s^{-1}H$ in the sense of
problem # 7.)

iv. Show that $G(f)$ is a subgroup of the symmetric group S_n of all permutations of
$\{1, \ldots, n\}$.

9. Show that the Galois group of $f(x) = x^2 - 2$ is of order 2.

4. ISOMETRY GROUPS.

10. Show that an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ which preserves the origin must be linear, i.e. must
be represented by multiplication by some matrix. Deduce that $\text{Isom}(\mathbb{R}^n)$ is generated by
the group T_n of translations and the orthogonal group $O(n, \mathbb{R})$.

11. Let M be a finite non-empty subset of the Euclidean plane \mathbb{R}^2. Give M the Euclidean
metric d_M. Show that an element f of $\text{Isom}(M, d_M)$ of order greater than 2 must be the
restriction of a rotation about some point of \mathbb{R}^2. (Hint: Show there is an $m \in M$ so m,
$f(m)$ and $f^2(m)$ are distinct. Consider the possibilities for $f^3(m)$. To what extent is f
determined by its action on m, $f(m)$ and $f^2(m)$?)

12. Bonus Problem (optional): With the notations of problem #11, describe the isomorphism
classes of groups which can arise as $\text{Isom}(M, d_M)$ for some finite non-empty set of points
M in \mathbb{R}^2.