1. ABELIAN CATEGORIES.

Let

\[0 \longrightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \longrightarrow 0 \]

be an exact sequence in an abelian category \(\mathcal{C} \). Suppose there is a morphism \(s : C \rightarrow B \) such that \(\pi \circ s \) is the identity morphism \(C \rightarrow C \).

1. Show that there is a morphism \(r : B \rightarrow A \) such that \(r \circ \iota : A \rightarrow A \) is the identity morphism of \(A \). (Hint: Consider the morphism \(\text{id}_B - s \circ \pi : B \rightarrow B \).)

2. Show that \(B \) is isomorphic both to the coproduct \(A \coprod C \) and to the product \(A \times C \) in \(\mathcal{C} \). (Hint: Use \(\iota, \pi, r \) and \(s \) to show \(B \) has the right universal properties.)

3. Suppose \(F : \mathcal{C} \rightarrow \mathcal{D} \) is an additive left exact covariant functor from \(\mathcal{C} \) to another abelian category \(\mathcal{D} \). (Recall that \(F \) is additive for every pair of objects \(A \) and \(B \) of \(\mathcal{C} \), \(F \) induces a homomorphism of abelian groups from \(\text{Mor}_\mathcal{C}(A, B) \) to \(\text{Mor}_\mathcal{D}(F(A), F(B)) \).) Show that

\[0 \longrightarrow F(A) \xrightarrow{\iota} F(B) \xrightarrow{\pi} F(C) \longrightarrow 0 \]

is exact and that \(F(B) \) is the coproduct of \(F(A) \) and \(F(C) \) in \(\mathcal{D} \).

2. INJECTIVE RESOLUTIONS AND DERIVED FUNCTORS.

Let \(\mathcal{C} \) be the abelian category of all abelian groups.

4. We proved in class that the injective abelian groups are exactly those which are divisible. For each finitely generated abelian group \(M \) find an injective resolution of the form

\[0 \rightarrow M \rightarrow I_0 \rightarrow I_1 \rightarrow 0 \]

(Hint: You can use the fundamental theorem about finitely generated abelian groups, which says that every such group is isomorphic to a finite direct sum of finite or infinite cyclic groups. Note that \(\frac{\mathbb{Z}}{n\mathbb{Z}} \) is cyclic of order \(n \).)

5. Let \(N \) be a finitely generated abelian group. Show that the functor \(F_N : \mathcal{C} \rightarrow \mathcal{C} \) defined by \(F_N(M) = \text{Hom}_\mathcal{C}(N, M) \) is a left exact, additive, covariant functor.

6. With the notation of problems #5 and #6, let \(R^iF_N : \mathcal{C} \rightarrow \mathcal{C} \) be the \(i \)th right derived functor of \(F_N \). Determine the group \(R^iF_N(M) \) for all \(i \geq 0 \) and all finitely generated \(N \) and \(M \). The usual notation for \(R^iF_N(M) \) is \(\text{Ext}^i_Z(N, M) \). (Hint: Using the fact that \(\text{Hom} \) commutes over finite direct sums, reduce to the case in which \(N \) and \(M \) each have a single generator. Then use the resolutions of problem #5.)
3. **Zorn’s Lemma.**

7. Suppose R is a commutative ring which is not the zero ring, i.e. such that 1_R is not 0_R. An element $x \in R$ is nilpotent if $x^n = 0_R$ for some positive integer n. Recall that a (two-sided) ideal of R is an additive subgroup J of R such that $rJ \subseteq J$ and $Jr \subseteq J$ for all $r \in R$.

7A. Show that the set $\text{nil}(R)$ of nilpotent elements of R is an ideal. This ideal is called the nilradical of R.

7B. An ideal J of R is prime if J is a proper ideal of R, and whenever x and y are elements of R such that $xy \in J$, then one of x or y is in J. Show that $\text{nil}(R)$ is contained in the intersection I of all the prime ideals of R.

7C. Show that $\text{nil}(R) = I$. (Hint: If x is an element of R which is not nilpotent, apply Zorn’s Lemma to the collection of ideals which contain no positive power of x.)

4. **Group cohomology and projective resolutions**

8. Suppose G is a group. Let $R = \mathbb{Z}[G]$ be the group ring of G. Thus the elements of R are finite integral combinations of the elements of G. The additive group \mathbb{Z} becomes an R-module if we let every element of G act as the identity on \mathbb{Z}. Thus if $\alpha = a_1 g_1 + \cdots + a_n g_n$ is an element of R with $a_i \in \mathbb{Z}$ and $g_i \in G$, then

$$\alpha \cdot n = \sum_i a_i n$$

for $n \in \mathbb{Z}$. A left R-module M is simply an abelian group with a left action of G. The cohomology groups $H^i(G, M)$ can be defined as in class using an injective resolution of M by R-modules. It can be shown that $H^i(G, M)$ is also isomorphic to the group $\text{Ext}^i_R(\mathbb{Z}, M)$ defined by Dummit and Foote in the Definition following displayed equation (17.7) in section 17.1 of their book. Using that definition, do problem #9 of section 17.2 of Dummit and Foote’s book. To do this exercise, really only need to use the definition they give of $\text{Ext}^i_R(\mathbb{Z}, M)$.