1. Dimension theory

1. Show that if \(J \) is an ideal of \(\mathbb{Z}[x] \) which contains two non-constant irreducible polynomials \(f(x) \) and \(g(x) \) which are not multiples of each other in \(\mathbb{Q}[x] \), then the ideal \(\mathbb{Z}[x]f(x) + \mathbb{Z}[x]g(x) \) must contain a non-zero integer. Use this to show that the maximal ideals \(\mathcal{M} \) of \(\mathbb{Z}[x] \) are exactly those of the form \(\mathcal{M} = \mathbb{Z}[x]p + \mathbb{Z}[x]f(x) \) in which \(p \) is a rational prime and \(f(x) \in \mathbb{Z}[x] \) is polynomial whose reduction \(\overline{f}(x) \in (\mathbb{Z}/p)[x] \) is irreducible. Then use this to give a proof that \(\mathbb{Z}[x] \) has dimension 2.

2. A ring \(A \) is (left) Noetherian if every sequences \(\{I_j\}_{j=1}^{\infty} \) of \(A \)-ideals which is ascending, in the sense that \(I_j \subset I_{j+1} \) for all \(j \), stabilizes in the sense that for some \(N \geq 1 \) we have \(I_j = I_N \) for all \(j \geq N \). In class we will discuss the fact that if \(A \) is a Noetherian commutative ring, then \(A \) is a U.F.D. if and only if every ideal of height 1 is principal. We also discussed the fact that the subring \(A = \mathbb{Z}[\sqrt{-5}] \) of \(\mathbb{C} \) generated by \(\mathbb{Z} \) and \(\sqrt{-5} \) is not a U.F.D.. Is \(\mathbb{Z}[\sqrt{-5}] \) Noetherian? If so, exhibit a height one prime which is not principal.

3. We will also discuss in class the fact that if \(A \) is a Noetherian commutative ring, and \(f \in A \) is neither a zero divisor or a unit, then every minimal element of the set of prime ideals of \(A \) which contain \(f \) has height 1. We’ll show later if \(A \) is Noetherian then so is the polynomial ring \(A[x_1, \ldots, x_n] \) in \(n \geq 1 \) commuting variables over \(A \). Find all the minimal prime ideals \(\mathcal{P} \) of \(\mathbb{Z}[x, y] \) which contain the element \(f = x(y^2 + 1) \).

2. Module theory.

4. Let \(R \) be the field of real numbers. Make the plane \(V = \mathbb{R}^2 \) into an \(R[x] \)-module by letting \(x \) act on \(V \) as the \(R \)-linear transformation \(X : V \to V \) which is rotation clockwise about the origin by \(\pi/2 \) radians. Show that \(\{0\} \) and \(V \) are the only \(R[x] \)-submodules of \(V \).

5. Suppose \(I \) is a nilpotent ideal of the ring \(R \), in the sense that \(I^n = \{0\} \) for some integer \(n > 0 \). Suppose \(\phi : M \to N \) is a homomorphism between left \(R \)-modules such that the induced homomorphism \(\overline{\phi} : M/IM \to N/IN \) is surjective. Prove that \(\phi \) is surjective.

6. Give an example of a ring \(R \) together with \(R \)-modules \(M \) and \(N \) such that there is a homomorphism of additive groups \(h : M \to N \) which is not an \(R \)-module homomorphism. Does such an example exist if \(R \) is a quotient ring of \(\mathbb{Z} \)? What if \(R = \mathbb{Q} \)? Find all the fields \(R \) for which such an example exists.

7. An \(R \)-module \(M \) is irreducible if \(M \neq \{0\} \) and if \(\{0\} \) and \(M \) are the only \(R \)-submodules of \(M \). Show that if \(M_1 \) and \(M_2 \) are irreducible \(R \)-modules then any non-zero \(R \)-module homomorphism from \(M_1 \) to \(M_2 \) is an isomorphism. What does this say about the ring \(\text{End}_R(M) \)? (This result is known as Schur’s Lemma.)