MATH 603: HOMEWORK #4

DUE IN RYAN MANION’S MAILBOX BY FRIDAY, MARCH 21, 2014

1. Primary ideals and decompositions

1. Let \mathcal{Q} be a primary ideal in a commutative ring A. Suppose \mathcal{B} and \mathcal{C} are ideals of A, and that $\mathcal{B} \mathcal{C} \subset \mathcal{Q}$. Suppose \mathcal{C} is finitely generated. Show that either $\mathcal{B} \subset \mathcal{Q}$, or there is an integer $n \geq 1$ such that $\mathcal{C}^n \subset \mathcal{Q}$.

2. Suppose $I = \mathcal{Q}_1 \cap \cdots \cap \mathcal{Q}_n$ is the reduced primary decomposition of a proper ideal I of a commutative ring A. Let S be a multiplicatively closed subset of A. Suppose $j \geq 1$ is an integer such that \mathcal{Q}_i does not intersect S for $1 \leq i \leq j$ but that \mathcal{Q}_i intersects S for $j < i \leq n$. Show that

$$S^{-1}I = (S^{-1}\mathcal{Q}_1) \cap \cdots \cap (S^{-1}\mathcal{Q}_j)$$

is a reduced primary decomposition of $S^{-1}I$ as an ideal for $S^{-1}A$.

3. Let M be a module for a commutative ring A. The support of M is defined to be

$$\text{supp}(M) = \{ \mathcal{P} \in \text{Spec}(A) : M_{\mathcal{P}} \neq 0 \}$$

where $M_{\mathcal{P}}$ is the localization of M at \mathcal{P}. Show that if M is finitely generated as an A module, then

$$\text{supp}(M) = V(\text{Ann}_A(M))$$

where $\text{Ann}_A(M)$ is the annihilator of M, and if J is an ideal of A,

$$V(J) = \{ \mathcal{P} \in \text{Spec}(A) : J \subset \mathcal{P} \}$$

is the closed subset of Spec(A) associated to J.

2. Fitting ideals

The following problems are from section 15.1 of Dummit and Foote’s book. Suppose M is a finitely generated module over the commutative ring R with generators m_1, \ldots, m_n. The Fitting ideal $F(M)$ (of level 0) of M (also called a determinant ideal) is the ideal in R generated by the determinants of all $n \times n$ matrices $A = (r_{i,j})$ where $r_{i,j} \in R$ and $r_{i,1}m_1 + \cdots + r_{i,n}m_n = 0$ in R, so the rows of A consist of the coefficients in R of relations among the generators m_i. In doing the problems below, you can use the basic properties of determinants described in the books of Lang and of Dummit and Foote.

4. Show that the Fitting ideal of M is also the ideal in R generated by all the $n \times n$ minors of all $p \times n$ matrices $A = (r_{i,j})$ for $p \geq 1$ whose rows consist of the coefficients in R of relations among the generators m_i.

5. With A as in problem #4, let A' be a $p \times n$ matrix obtained from A by any elementary row and column operation. Show that the ideal in R generated by all the $n \times n$ minors of A is the same as the ideal in R generated by all the $n \times n$ minors of A'.

6. Suppose m_1, \ldots, m_n and and m'_1, \ldots, m'_n are two sets of R-module generators for M. Let F denote the Fitting ideal for M computed using the generators m_1, \ldots, m_n and let F' denote the Fitting ideal for M computed using the generators $m_1, \ldots, m_n, m'_1, \ldots, m'_n$.

a. Show that $m'_s = a_{s,1}m_1 + \cdots + a_{s,n}m_n$ for some $a_{s,1}, \ldots, a_{s,n} \in R$. Deduce from this that $(-a_{s,1}, \ldots, -a_{s,n}, 0, \ldots, 0, 1, 0, \ldots, 0)$ is a relation among $m_1, \ldots, m_n, m'_1, \ldots, m'_n$.

b. Suppose \(A = (r_{i,j}) \) is an \(n \times n \) matrix whose rows are the coefficients of relations among \(m_1, \ldots, m_n \). Show that \(\det(A) = \det(A') \) where \(A' \) is an \((n + n') \times (n + n') \) matrix whose rows are the coefficients of relations among \(m_1, \ldots, m_n, m'_1, \ldots, m'_{n'} \). Deduce that \(F \subset F' \). (Hint: Use part (a) to find a block upper triangular \(A' \) having \(A \) in the upper left block and the \(n' \times n' \) identity matrix in the lower right block.)

c. Prove that \(F' \subset F \) and conclude that \(F' = F \). (Hint: Use part (a) to produce some elementary row operations on \((n + n') \times (n + n') \) relation matrices, and use problem # 5.)

d. Deduce from (c) that the Fitting ideal \(F = F_R(M) \) of \(M \) is an invariant of \(M \) that does not depend on the choice of generators for \(M \) used to compute it.

7. Let \(R \) be a commutative ring. All the modules in this exercise will be assumed to be finitely generated.
 a. Suppose \(M \) can be generated by \(n \) elements. Prove that \(\text{Ann}_R(M)^n \subset F_R(M) \subset \text{Ann}_R(M) \). (You can use that if \(A \) is an \(n \times n \) matrix, and \(A' \) is the cofactor transpose of \(A \), then \(A'A \) is the diagonal matrix having each diagonal entry equal to \(\det(A) \).)
 b. Show that if \(M = M_1 \oplus M_2 \) is the direct sum of two modules \(M_1 \) and \(M_2 \) then \(F_R(M) = F_R(M_1) \cdot F_R(M_2) \).
 c. Suppose \(M = (R/I_1) \times \cdots \times (R/I_m) \) for some ideals \(I_i \) of \(R \). Show that \(F_R(M) = I_1 \cdots I_m \).
 d. Suppose \(I \) is an ideal of \(R \). Show that the image of \(F_R(M) \) in \(R/I \) is \(F_{R/I}(M/IM) \).
 e. With the notations of part (d), show that \(F_R(M/IM) \subset F_R(M) + I \subset R \).
 f. Show that if \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) is an exact sequence of (finitely generated) \(R \)-modules, then \(F_R(L)F_R(N) \subset F_R(M) \).