1. **Splitting fields, separability and normality.**

1. Find the splitting field E of $f(x) = x^6 + x^3 + 1$ over \mathbb{Q} inside \mathbb{C}, and determine the degree $[E : \mathbb{Q}]$.

2. Let F be a field characteristic $p > 0$, and suppose that α is algebraic over F. Show that α is separable over F if and only if $F(\alpha) = F(\alpha^p)$ for all integers $n > 0$.

3. A field F is called perfect if either $\text{char}(F) = 0$ or $\text{char}(F) = p$ and the Frobenius map $\Phi : F \rightarrow F$ defined by $\Phi(\alpha) = \alpha^p$ is an isomorphism. Show that a field F is perfect if and only if every algebraic extension of F is separable.

4. Suppose F is a field, $f(x)$ is a monic irreducible polynomial in $F[x]$ and that K is a finite normal extension of F. Suppose that $g(x)$ and $h(x)$ are monic irreducible factors of $f(x)$ in $K[x]$. Show that there is an automorphism σ of K over F such that $\sigma(g(x)) = h(x)$, where $\sigma(g(x))$ is the polynomial which results from applying σ to the coefficients of $g(x)$. Give an example in which this is not true if K is not normal over F.

2. **Finite fields.**

5. Do problems 22 at the end of Chapter 5 of Lang’s “Algebra”. (You can assume the Mobius inversion formula stated in problem 21 of this chapter - this formula is not difficult to prove.)

6. Do problem 23 at the end of Chapter 5 of Lang’s “Algebra”.

3. **Straightedge and compass constructions.**

7. Do problem # 2 of section 13.3 of Dummit and Foote.

1. **Galois Theory.**

11. Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible fourth-degree polynomial and that the Galois group of $f(x)$ is the alternating group A_4. Show that the field $\mathbb{Q}(\alpha)$ obtained by adjoining a root α of $f(x)$ to \mathbb{Q} is a quartic extension which has no subfield L which is quadratic over \mathbb{Q}. Conclude that one cannot construct the point $(1, \alpha)$ in \mathbb{R}^2 by ruler and compass. Use the theory in Dummit and Foote’s section 14.6 (or some other method) to construct an $f(x)$ with the above properties.