2. Resolvent rings and parametrizations

Before introducing the notion of resolvent ring, it is necessary first to understand a formal construction of “Galois closure” at the level of rings, which we call “S_k-closure”. We view this construction as a formal analogue of Galois closure because if R is an order in an S_k-field of degree k, then it turns out that its S_k-closure \bar{R} is an order in the usual Galois closure \bar{K} of K. More generally, the S_k-closure operation gives a way of attaching to any ring R with unit that is free of rank k over \mathbb{Z}, a ring \bar{R} with unit that is free of rank $k!$ over \mathbb{Z}.

Let us fix some terminology. By a ring of rank k we will always mean a commutative ring with unit that is free of rank k over \mathbb{Z}. To any such ring R of rank k we may attach the trace function $\text{Tr}: R \to \mathbb{Z}$, which assigns to an element $\alpha \in R$ the trace of the endomorphism $m_\alpha : R \ni x \mapsto x\alpha$ given by multiplication by α. The discriminant $\text{Disc}(R)$ of such a ring R is then defined as the determinant $\det(\text{Tr}(\alpha_i \alpha_j)) \in \mathbb{Z}$, where $\{\alpha_i\}$ is any \mathbb{Z}-basis of R.

The discriminants of individual elements in R may also be defined and will play an important role in what follows. Let F_α denote the characteristic polynomial of the linear transformation $m_\alpha : R \to R$ associated to α. Then the discriminant $\text{Disc}(\alpha)$ of an element $\alpha \in R$ is defined to be the discriminant of the characteristic polynomial F_α. In particular, if $R = \mathbb{Z}[\alpha]$ for some $\alpha \in R$, then we have $\text{Disc}(R) = \text{Disc}(\alpha)$.

2.1. The S_k-closure of a ring of rank k. Let R be any ring of rank k having nonzero discriminant, and let $R^\otimes k$ denote the kth tensor power $R^\otimes k = R \otimes \mathbb{Z} R \otimes \mathbb{Z} \cdots \otimes \mathbb{Z} R$ of R. Then $R^\otimes k$ is seen to be a ring of rank k^k in which \mathbb{Z} lies naturally as a subring via the mapping $n \mapsto n(1 \otimes 1 \otimes \cdots \otimes 1)$.

Denote by I_R the ideal in $R^\otimes k$ generated by all elements of the form

$$(x \otimes 1 \otimes \cdots \otimes 1) + (1 \otimes x \otimes \cdots \otimes 1) + \cdots + (1 \otimes 1 \otimes \cdots \otimes x) - \text{Tr}(x)$$

for $x \in R$. Let J_R denote the \mathbb{Z}-saturation of the ideal I_R; i.e., let

$$J_R = \{r \in R^\otimes k : nr \in I_R \text{ for some } n \in \mathbb{Z}\}.$$

With these definitions, it is easy to see that if $\alpha \in R$ satisfies the characteristic equation $F_\alpha(x) = x^k - a_1x^{k-1} + a_2x^{k-2} - \cdots - a_k = 0$ with $a_i \in \mathbb{Z}$, then the ith elementary symmetric polynomial in the k elements $\alpha \otimes 1 \otimes \cdots \otimes 1$, $1 \otimes \alpha \otimes \cdots \otimes 1$, \ldots, $1 \otimes 1 \otimes \cdots \otimes \alpha$ will be congruent to a_i modulo J_R for all $1 \leq i \leq k$.

For example, if $k = 2$ and $\alpha \in R$ satisfies $F_\alpha(x) = x^2 - a_1x + a_2 = 0$, then

$$2 \alpha \otimes \alpha = (\alpha \otimes 1 + 1 \otimes \alpha)^2 - (\alpha^2 \otimes 1 + 1 \otimes \alpha^2) \equiv \text{Tr}(\alpha)^2 - \text{Tr}(\alpha^2) = 2a_2 \pmod{J_R}$$

and hence $\alpha \otimes \alpha \equiv a_2 \pmod{J_R}$. An analogous argument works for all k.
It is therefore natural to make the following definition:

Definition 6. The S_k-closure of a ring R of rank k is the ring \bar{R} given by R^{S_k}/J_R.

This notion of S_k-closure is precisely the formal analogue of “Galois closure” we seek. We may write $\text{Gal}(\bar{R}/\mathbb{Z}) = S_k$, since the symmetric group S_k acts naturally as a group of automorphisms on \bar{R}. Furthermore, the sub-ring \bar{R}^{S_k} consisting of all elements fixed by this action is simply \mathbb{Z}. Indeed, it is known by the classical theory of polarization that the S_k-invariants of R^{S_k} are spanned by elements of the form $x \otimes \cdots \otimes x$ ($x \in R$), and the latter is simply $N(x)$ modulo J_R. A similar argument shows that we also have $\text{Gal}(\bar{R}/R) = S_{k-1}$, where R naturally embeds into \bar{R} by $x \mapsto x \otimes 1 \otimes \cdots \otimes 1$.

For example, let us consider the case where R is an order in a number field K of degree k such that $\text{Gal}(\bar{K}/\mathbb{Q}) = S_k$. Then \bar{R} is isomorphic to the ring generated by all the Galois conjugates of elements of R in \bar{K}, i.e.,

$$\bar{R} = \mathbb{Z}[\{\alpha : \alpha \ S_k\text{-conjugate to some element of } R\}]$$

More generally, if R is an order in a number field K of degree k whose associated Galois group has index n in S_k, then the “S_k-closure” of K will be a direct sum of n copies of the Galois closure of K (and hence will have dimension $k!$ over \mathbb{Q}), and the S_k-closure of R will be a subring of this having \mathbb{Z}-rank $k!$.

In the next two subsections, we use the notion of S_k-closure to attach rings of lower rank to orders in cubic and quartic fields.

2.2. The quadratic resolvent of a cubic ring. Given a cubic ring, there is a natural way to associate to R a quadratic ring S, namely the unique quadratic ring S having the same discriminant as R. Since the discriminant $D = \text{Disc}(R)$ of R is necessarily congruent to 0 or 1 modulo 4, the quadratic ring $S(D)$ of discriminant D always exists; we call $S = S(D)$ the quadratic resolvent ring of R.

Definition 7. For a cubic ring R, the quadratic resolvent ring $S^{\text{res}}(R)$ of R is the unique quadratic ring S such that $\text{Disc}(R) = \text{Disc}(S)$.

Given a cubic ring R, there is a natural map from R to its quadratic resolvent ring S that preserves discriminants. Indeed, for an element $x \in R$, let x, x', x'' denote the S_3-conjugates of x in the S_3-closure \bar{R} of R. Then the element

$$\tilde{\phi}_{3,2}(x) = \frac{[(x - x')(x' - x'')(x'' - x) + (x - x')(x' - x'')(x'' - x)]^2}{2}$$

is contained in some quadratic ring, and $\tilde{\phi}_{3,2}(x)$ has the same discriminant as x. (Notice that the expression (4) is only interesting modulo \mathbb{Z}, for $\tilde{\phi}_{3,2}(x)$ could