CUSPS OF ARITHMETIC GROUPS

MATT STOVER

Let $\Gamma < G$ be an arithmetic lattice in a semisimple Lie group, defined via the number field k. How does the arithmetic of k affect the geometry of the corresponding locally symmetric space? I will explain how, when G is a unitary group and Γ is maximal nonuniform lattice, the geometry at infinity is dictated by the structure of the ideal class group of k. I will focus on the case $G = SU(2, 1)$, where nonuniform arithmetic lattices are commensurable with the so-called Picard modular groups, and prove that, for any N, there are only finitely many commensurability classes which contain an element with N cusps, i.e. N topological ends for the corresponding locally symmetric space. Given time, I will discuss the higher-rank analogue.