Contents

1 Problems 2
2 Solution key 8
3 Solutions 9
1 Problems

Question 1: Let \(L \) be the line tangent to the curve
\[
\mathbf{r}'(t) = \langle t^2 + 3t + 2, e^t \cos t, \ln(t + 1) \rangle
\]
at \(t = 0 \). Find the coordinates of the point of intersection of \(L \) and the plane \(x + y + z = 8 \).

(A) (2, 1, 0) (B) (6, e^2 \cos 2, \ln(2)) (C) (2, 0, 1)
(D) (5, 2, 1) (E) (8, 3, 2) (F) (0, 4, 4)

Solution Key: 2 Solution: 3

Question 2: Which vector is perpendicular to the plane containing the three points \(P(2, 1, 5), Q(-1, 3, 4), \) and \(R(3, 0, 6) \)?

(A) \(2\mathbf{i} - \mathbf{j} + \mathbf{k} \) (B) \(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \) (C) \(2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \)
(D) \(2\mathbf{i} + 3\mathbf{j} + \mathbf{k} \) (E) \(\mathbf{i} + 2\mathbf{j} + \mathbf{k} \) (F) \(2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \)

Solution Key: 2 Solution: 3
Question 3: A force \(\vec{F} = 2\hat{i} + \hat{j} - 3\hat{k} \) is applied to a spacecraft with velocity vector \(\vec{v} = 3\hat{i} - \hat{j} \). If you express \(\vec{F} = \vec{a} + \vec{b} \) as a sum of a vector \(\vec{a} \) parallel to \(\vec{v} \) and a vector \(\vec{b} \) orthogonal to \(\vec{v} \), then \(\vec{b} \) is:

(A) \(3\hat{i} + 6\hat{j} - \hat{k} \)
(B) \(\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \)
(C) \(\frac{3}{2}\hat{i} - \frac{3}{2}\hat{j} \)

(D) \(8\hat{i} + 4\hat{j} - \hat{k} \)
(E) \(12\hat{i} - \hat{j} + \hat{k} \)
(F) \(\hat{i} + 3\hat{j} - \hat{k} \)

Solution Key: 2\[3\]
Solution: 3\[3\]

Question 4: Which of the following points lies on the same plane with \((1, 2, 0), (2, 2, 1), (0, 1, 1)\)?

(A) \((1, 1, 1)\)
(B) \((4, -1, 1)\)
(C) \((4, 1, 1)\)

(D) \((1, 1, -1)\)
(E) \((2, -1, 3)\)
(F) \((2, 1, 3)\)

Solution Key: 2\[4\]
Solution: 3\[4\]
Question 5: The curvature of the curve

\[\vec{r}(t) = 2t \hat{i} + t^2 \hat{j} - \frac{1}{3} \hat{k} \]

at the point \(t = 0 \) is

(A) 0 (B) 2 (C) \(-\frac{1}{4}\)

(D) \(\frac{1}{2}\) (E) \(-1\) (F) none of the above

Solution Key: 2\[\text{B}\] Solution: 3\[\text{B}\]

Question 6: Which of the following surfaces intersect the plane \(x = 2 \) at a parabola?

(A) \(-\frac{z^2}{2} = \frac{x^2}{9} + \frac{y^2}{4}\) (B) \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4} - 1\)

(C) \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4}\) (D) \(\frac{z}{2} = \frac{x^2}{9} - \frac{y^2}{4}\)

(E) \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4} + 1\) (F) \(-\frac{z^2}{25} = \frac{x^2}{9} + \frac{y^2}{4}\)

Solution Key: 2\[\text{B}\] Solution: 3\[\text{B}\]
Question 7: The set of points P such that $\overrightarrow{QP} \cdot \overrightarrow{B} = 2$ is

(A) a line though Q parallel to \overrightarrow{B}

(B) a plane through Q parallel to \overrightarrow{B}

(C) a plane through Q perpendicular to \overrightarrow{B}

(D) a line parallel to \overrightarrow{B} but not passing through Q

(E) a plane perpendicular to \overrightarrow{B} but not passing through Q

(F) a line through Q and perpendicular to \overrightarrow{B}

Solution Key: 2

Solution: 3
Question 8: The trout in a pond is harvested at a constant rate of H trout per day. It is known that the growth of the trout population is governed by the logistic equation with harvesting:

$$\frac{dP}{dt} = 12P - P^2 - H. $$

(a) For what harvesting rates will this growth model have two equilibrium populations? Will these equilibria be stable or unstable?

(b) Determine the special value of H for which the population growth has a single equilibrium. What will happen if we start harvesting at a rate higher than this special value?

Solution Key: 2

Solution: 3

Question 9: True or false. Explain your reasoning.

(a) The line $\vec{r}(t) = (1 + 2t)\hat{i} + (1 + 3t)\hat{j} + (1 + 4t)\hat{k}$ is perpendicular to the plane $2x + 3y - 4z = 9$.

(b) The equation $x^2 = z^2$ in three dimensions, describes an ellipsoid.

(c) $|\vec{a} \times \vec{b}| = 0$ implies that either $\vec{a} = 0$ or $\vec{b} = 0$.

Solution Key: 2

Solution: 3

Question 10: A bug is crawling along a helix and his position at time t is given by $\vec{r}(t) = (\sin(2t), \cos(2t), t)$. Which of the following statements are true and which are false? Explain and justify your reasoning.

(a) The unit normal vector always points toward the z-axis.

(b) The bug travels upward at a constant rate, i.e. the unit tangent vector has a constant z-component at any moment of time.

(c) The unit binormal vector always points straight up or straight down.
2 Solution key

(1) (D)
(2) (E)
(3) (B)
(4) (F)
(5) (D)
(6) (D)
(7) (E)
(8) (a) $H < 36$, one unstable and one stable equilibrium; (b) to have one equilibrium we must harvest at a rate $H = 36$. If $H > 36$, then the trout population will go extinct.
(9) (a), (b), and (c) are false
(10) (a) is true, (b) is true, and (c) is false.
3 Solutions

Solution of problem 1.1: The point P on the curve corresponding to the value of the parameter $t = 0$ has position vector $\vec{r}(0) = \langle 2, 1, 0 \rangle$. In other words P has coordinates $P(2, 1, 0)$. The tangent vector to the curve at P is the vector $\frac{d\vec{r}}{dt}(0) = \left(\frac{d}{dt}(t^2 + 3t + 2, e^t \cos t, \ln(t + 1)) \right)_{t=0}$

$$= \left(\langle 2t + 3, e^t \cos t - e^t \sin t, \frac{1}{t+1} \rangle \right)_{t=0}$$

$$= \langle 3, 1, 1 \rangle.$$

The tangent line L at $t = 0$ is the line passing through P and having the tangent vector $\frac{d\vec{r}}{dt}(0)$ as a direction vector. Thus L is given by the parametric equations

$$x = 2 + 3s,$$

$$y = 1 + s,$$

$$z = s.$$

To intersect the line L with the plane $x + y + z = 8$ we substitute the parametric expressions for x, y, and z in the equation of the plane and solve for s. We get $(2 + 3s) + (1 + s) + s = 8$, i.e. $s = 1$. Thus the point of intersection is the point on the line which corresponds to the value of the parameter $s = 1$, i.e. the point $(5, 2, 1)$. The correct answer is (D).

Solution of problem 1.2: A vector is perpendicular to a plane if and only if it is parallel to a normal vector for the plane.

To find a vector \vec{n} which is normal to the plane containing $P(2, 1, 5)$, $Q(-1, 3, 4)$, and $R(3, 0, 6)$ we need to find two non-parallel vectors in the plane and compute their cross products. The vectors

$$\vec{PQ} = \langle -1 - 2, 3 - 1, 4 - 5 \rangle = \langle -3, 2, -1 \rangle$$

$$\vec{PR} = \langle 3 - 2, 0 - 1, 6 - 5 \rangle = \langle 1, -1, 1 \rangle$$
are not parallel and belong to the plane, so we have

\[\mathbf{\overrightarrow{n}} = \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 2 & -1 \\ 1 & -1 & 1 \end{vmatrix} = (2 - 1)\hat{i} + (3 - 1)\hat{j} + (3 - 2)\hat{k} \]

\[= \hat{i} + 2\hat{j} + \hat{k} \]

The correct answer is (E).

Solution of problem 1.3: If \(\mathbf{\overrightarrow{F}} = \mathbf{\overrightarrow{a}} + \mathbf{\overrightarrow{b}} \) with \(\mathbf{\overrightarrow{a}} \parallel \mathbf{\overrightarrow{v}} \) and \(\mathbf{\overrightarrow{b}} \perp \mathbf{\overrightarrow{v}} \), then \(\mathbf{\overrightarrow{a}} \) is the orthogonal projection of \(\mathbf{\overrightarrow{F}} \) onto \(\mathbf{\overrightarrow{v}} \). From the formula for an orthogonal projection we compute

\[\mathbf{\overrightarrow{a}} = \text{proj}_{\mathbf{\overrightarrow{v}}} \mathbf{\overrightarrow{F}} = \frac{\mathbf{\overrightarrow{F}} \cdot \mathbf{\overrightarrow{v}}}{|\mathbf{\overrightarrow{v}}|^2} \mathbf{\overrightarrow{v}} \]

\[= \frac{\langle 2, 1, -3 \rangle \cdot \langle 3, -1, 0 \rangle}{3^2 + (-1)^2} \langle 3, -1, 0 \rangle \]

\[= \frac{5}{10} \langle 3, -1, 0 \rangle \]

\[= \left\langle \frac{3}{2}, \frac{-1}{2}, 0 \right\rangle. \]

Therefore

\[\mathbf{\overrightarrow{b}} = \mathbf{\overrightarrow{F}} - \mathbf{\overrightarrow{a}} \]

\[= \langle 2, 1, -3 \rangle - \left\langle \frac{3}{2}, \frac{-1}{2}, 0 \right\rangle \]

\[= \left\langle \frac{1}{2}, \frac{3}{2}, -3 \right\rangle. \]
The correct answer is (B).

Solution of problem 1.4: If we label the points on the plane as \(P_0 = (1, 2, 0) \), \(Q_0 = (2, 2, 1) \), and \(R_0 = (0, 1, 1) \), then we can easily write two vectors parallel to the plane, e.g.

\[
\vec{u} = \overrightarrow{P_0Q_0} = (2 - 1)\hat{i} + (2 - 2)\hat{j} + (1 - 0)\hat{k} = \hat{i} + \hat{k}
\]
\[
\vec{v} = \overrightarrow{P_0R_0} = (0 - 1)\hat{i} + (1 - 2)\hat{j} + (1 - 0)\hat{k} = -\hat{i} - \hat{j} + \hat{k}.
\]

The normal vector to the plane is given by the cross-product \(\vec{n} = \vec{u} \times \vec{v} \).

We compute
\[
\vec{n} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & 1 \\
-1 & -1 & 1
\end{vmatrix} = \hat{i} - 2\hat{j} - \hat{k}.
\]

Thus a point \(P = (x, y, z) \) on the plane must satisfy the equation \(\vec{n} \cdot \overrightarrow{P_0P} = 0 \), which is

\[
(x - 1) - 2(y - 2) - (z - 0) = 0
\]

or simply
\[
x - 2y - z = -3.
\]

Substituting the various choices in this equation we see that the only solution is the point \((2, 1, 3)\) corresponding to answer (F).

Solution of problem 1.5: The curvature of \(\vec{r}'(t) \) is given by

\[
\kappa(t) = \frac{|\frac{d\vec{T}}{dt}|}{|\vec{r}'|},
\]

where \(\vec{T} \) is the unit tangent vector. We compute

\[
\vec{r}''(t) = (2, 2t, 0),
\]

and so \(|\vec{r}''| = \sqrt{4 + 4t^2} \). In particular we have

\[
\vec{T} = \left< 2(4 + 4t^2)^{-\frac{1}{2}}, 2t(4 + 4t^2)^{-\frac{1}{2}}, 0 \right>.
\]
Substituting in the formula for the curvature we get

\[\kappa(t) = \frac{\left| \frac{d}{dt} \left(2(4 + 4t^2)^{-\frac{1}{2}}, 2t(4 + 4t^2)^{-\frac{1}{2}}, 0 \right) \right|}{(4 + 4t^2)^{\frac{3}{2}}} \]

\[= \frac{\left| -8t(4 + 4t^2)^{-\frac{3}{2}}, 2(4 + 4t^2)^{-\frac{1}{2}} - 8t^2(4 + 4t^2)^{-\frac{3}{2}}, 0 \right|}{(4 + 4t^2)^{\frac{3}{2}}} \]

Evaluating at \(t = 0 \) we get

\[\kappa(0) = \frac{|\langle 0, 1, 0 \rangle|}{2} = \frac{1}{2}. \]

The correct answer is (D).

\[\square \]

Solution of problem 1.6: The curve of intersection of each surface with the plane \(x = 2 \) will be given by the equation in the variables \(y \) and \(z \) that is obtained from the equation of the surface after the substitution \(x = 2 \).

Substituting \(x = 2 \) in the equation of each surface we get the following equations in \(y \) and \(z \):

(A) Setting \(x = 2 \) in \(-\frac{z^2}{2} = \frac{x^2}{9} + \frac{y^2}{4} \) gives

\[-\frac{z^2}{2} = \frac{4}{9} + \frac{y^2}{4} \]

or equivalently

\[\frac{y^2}{4} + \frac{z^2}{2} = -\frac{4}{9}. \]

This equation has no solution so it describes the empty set. In other words the surface (A) and the plane \(x = 2 \) do not intersect.
(B) Setting \(x = 2 \) in \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4} - 1 \) gives
\[
\frac{z^2}{4} = \frac{4}{9} + \frac{y^2}{4} - 1
\]
or equivalently
\[
\frac{y^2}{4} - \frac{z^2}{4} = \frac{5}{9}
\]
which is a scaling of a standard equation of a hyperbola.

(C) Setting \(x = 2 \) in \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4} \) gives
\[
\frac{z^2}{4} = \frac{4}{9} + \frac{y^2}{4}
\]
or
\[
\frac{y^2}{4} - \frac{z^2}{4} = \frac{4}{9}
\]
which is again a scaling of a standard equation of a hyperbola.

(D) Setting \(x = 2 \) in \(\frac{z}{2} = \frac{x^2}{9} - \frac{y^2}{4} \) gives
\[
\frac{z}{2} = \frac{4}{9} - \frac{y^2}{4}
\]
or
\[
z = \frac{8}{9} - \frac{y^2}{2}
\]
which is the equation of a parabola.

(E) Setting \(x = 2 \) in \(\frac{z^2}{4} = \frac{x^2}{9} + \frac{y^2}{4} + 1 \) gives
\[
\frac{z^2}{4} = \frac{4}{9} + \frac{y^2}{4} + 1
\]
or
\[
\frac{z^2}{4} - \frac{y^2}{4} = \frac{13}{9}
\]
which is again a scaling of a standard equation of a hyperbola.
The correct answer is (D).

Solution of problem 1.7: Given a point Q and a vector \overrightarrow{B} the vector equation

$$\overrightarrow{QP} \cdot \overrightarrow{B} = 0$$

is the standard equation of the plane α that passes through Q and is perpendicular to \overrightarrow{Q}. The equation $\overrightarrow{QP} \cdot \overrightarrow{B} = 2$ will describe a plane β which is parallel to α and thus perpendicular to \overrightarrow{B}. Since the right hand side in this equation is $2 \neq 0$ we conclude that β does not pass through Q.

More explicitly, if $Q = (x_0, y_0, z_0)$ is a fixed point and $\overrightarrow{B} = a\hat{i} + b\hat{j} + c\hat{k}$ is a given vector, then a point $P = (x, y, z)$ satisfies the vector equation $\overrightarrow{QP} \cdot \overrightarrow{B} = 2$ if and only if the variables x, y and z satisfy the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 2.$$

Since the coefficients of x, y and z in this equation are a, b and c, this is an equation of a plane with normal vector equal to \overrightarrow{B}. Moreover, since the right hand side of the equation is not zero, the point Q can not lie on this plane. Therefore the correct choice is (E).

Solution of problem 1.8: (a) The equilibria for this model are solutions of the quadratic equation $12P - P^2 - H = 0$ or equivalently $P^2 - 12P + H = 0$. The discriminant of this equation is

$$(-12)^2 - 4H = 144 - 4H = 4(36 - H).$$

Therefore the quadratic equation will have two solutions only when $H < 36$.

Suppose $H < 36$. From the quadratic formula we see that the equilibria are given by

$$P_1 = 6 - \sqrt{36 - H} \quad \text{and} \quad P_2 = 6 + \sqrt{36 - H}$$
and so
\[\frac{dP}{dt} = -(P - P_1)(P - P_2). \]
This implies that \(dP/dt < 0 \) for \(P < P_1 \) and \(P > P_2 \) and \(dP/dt > 0 \) for \(P_1 < P < P_2 \). In particular, \(P \) is decreasing when \(P < P_1 \), \(P \) increases when \(P_1 < P < P_2 \), and \(P \) decreases again when \(P > P_2 \). This shows that both \(P = P_1 \) is an unstable equilibrium and \(P = P_2 \) is a stable equilibrium.

(b) In order to have a single equilibrium, we must choose \(H \) so that the quadratic equation \(-P^2 + 12P - H = 0\) has a unique solution. This means that the discriminant of this equation ought to be equal to zero, i.e. we ought have \(4(36 - H) = 0 \). Thus the special value of \(H \) is \(H = 36 \). In this case, the differential equation becomes
\[\frac{dP}{dt} = 12P - P^2 - 36 = -(P - 6)^2. \]
The unique equilibrium is at \(P = 6 \).
If \(H > 36 \) the equation has no equilibria, and moreover we have that
\[\frac{dP}{dt} = 12P - P^2 - H = -(P - 6)^2 + (36 - H) \]
is always negative. This shows that if we harvest the trout at rate higher than the critical harvesting rate \(H = 36 \), then the population will steadily decrease and we will eventually empty the pond completely.
In contrast, if we harvest at a rate smaller than the critical harvesting rate \(H = 36 \) and if we start with enough trout in the pond, then we will always have enough fish to harvest.

Solution of problem 1.9: (a) From the parametric equation \(\vec{r}(t) = (1 + 2t)\hat{i} + (1 + 3t)\hat{j} + (1 + 4t)\hat{k} \) we can extract a direction vector for the line. It is the vector \(\vec{v} \) whose components are given by the coefficients of the parameter \(t \) in the parametric equation. Thus \(\vec{v} = 2\hat{i} + 3\hat{j} + 4\hat{k} \).
Also, from the equation \(2x + 3y - 4z = 9 \) of the plane we can extract a normal vector \(\vec{n} \) to the plane. It is the vector whose components are the coefficients of the equation of the plane. Thus \(\vec{n} = 2\hat{i} + 3\hat{j} - 4\hat{k} \).
The line and the plane will be perpendicular when \(\vec{v} \) is parallel to \(\vec{n} \), that is when \(\vec{v} \) is proportional to \(\vec{n} \). But if \(\vec{v} = c \cdot \vec{n} \) for some constant \(c \), then we will have \(2 = 2c \), \(3 = 3c \), and \(4 = -4c \). From the first equation we get \(c = 1 \) but from the last equation we have \(c = -1 \). This is a contradiction. Therefore the line and the plane are not perpendicular, and so (a) is False.

(b) The equation \(x^2 = z^2 \) depends only on two variables so it describes a cylinder with a base in the \(xz \)-plane. Hence \(x^2 = z^2 \) can not be an ellipsoid and (b) is False.

(c) If the length of \(\vec{a} \times \vec{b} \) is zero, then the vector \(\vec{a} \times \vec{b} \) must be the zero vector. This can happen either when one of \(\vec{a} \) or \(\vec{b} \) is the zero vector, or when \(\vec{a} \) is parallel to \(\vec{b} \). For instance if \(\vec{a} \) is any vector and \(\vec{b} = \vec{a} \) we will have \(\vec{a} \times \vec{b} = \vec{a} \times \vec{a} = \vec{0} \). Hence (c) is False.

Solution of problem 1.10:

(a) The unit normal vector is given by

\[
\vec{N} = \frac{\frac{d\vec{T}}{dt}}{\left| \frac{d\vec{T}}{dt} \right|}
\]

where \(\vec{T} \) is the unit tangent vector. To compute \(\vec{T} \) we compute the velocity vector \(\frac{d\vec{r}}{dt} = \langle 2 \cos(2t), -2 \sin(2t), 1 \rangle \) and normalize

\[
\vec{T} = \frac{1}{\left| \frac{d\vec{r}}{dt} \right|} \frac{d\vec{r}}{dt}
\]

\[
= \frac{1}{\sqrt{4 \cos^2(2t) + 4 \sin^2(2t) + 1}} \langle 2 \cos(2t), -2 \sin(2t), 1 \rangle
\]

\[
= \left\langle \frac{2}{3} \cos(2t), -\frac{2}{3} \sin(2t), \frac{1}{3} \right\rangle.
\]

Hence

\[
\frac{d\vec{T}}{dt} = \left\langle -\frac{4}{3} \sin(2t), -\frac{4}{3} \cos(2t), 0 \right\rangle,
\]

16
and so

\[\vec{N} = \frac{\frac{d\vec{T}}{dt}}{\left|\frac{d\vec{T}}{dt}\right|} = \frac{3}{4} \left\langle -\frac{4}{3} \sin(2t), -\frac{4}{3} \cos(2t), 0 \right\rangle = \langle -\sin(2t), -\cos(2t), 0 \rangle. \]

This is a horizontal vector pointing radially towards the z-axis. So (a) is true.

(b) From the formula for \(\vec{T} \) above we see that the z component of \(\vec{T} \) is constant and equal to 1/3. So (b) is true.

(c) The unit binormal vector is given by

\[\vec{B} = \vec{T} \times \vec{N} \]

\[= \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{2}{3} \cos(2t) & -\frac{2}{3} \sin(2t) & \frac{1}{3} \\ -\sin(2t) & -\cos(2t) & 0 \end{pmatrix} \]

\[= \left\langle \frac{1}{3} \cos(2t), -\frac{1}{3} \sin(2t), -\frac{2}{3} \right\rangle. \]

This vector has non-trivial x and y components so (c) is false.