Solutions to the Midterm Exam, Math 214, Spring 2020

Question 1. True or false. Give a reason or a counter-example

(a) If an \mathbb{R}-vector space has a finite generating set, then it is finite dimensional.

(b) A generating subset in a finite dimensional \mathbb{R}-vector space must consist of finitely many vectors.

(c) If S is a finite set, and \mathbb{K} is a field, then the vector space $\text{Fun}(S, \mathbb{K})$ of all functions from S to \mathbb{K} is finite dimensional.

Answer 1. Statement (a) is True because every finite generating set contains a maximal linearly independent subset and hence contains a basis.

Statement (b) is False since the set of all vectors in a vectors space is a spanning set. For instance if we view $V = \mathbb{R}$ as an \mathbb{R}-vector space, then V contains infinitely many elements and they trivially generate V.

Statement (c) is True since the collection of delta functions $\{\delta_s\}_{s \in S}$ is a basis of $\text{Fun}(S, \mathbb{K})$. □

Question 2. Let V be a vector space over a field \mathbb{K}, and let $x, y \in V$ be two vectors, and $a, b \in \mathbb{K}$ be two scalars. Show that

$$ax + by = bx + ay$$

if and only if $a = b$ and/or $x = y$.
Answer 2. Since
\[ax + by = bx + ay \]
the existence of additive inverses for vector addition gives
\[ax + by - bx - ay = 0. \]
Commutativity of addition and distributivity of scaling and addition then give
\[(a - b)(x - y) = 0. \]
If \(a - b \neq 0 \) we can multiply both sides of the last identity by \(1/(a - b) \) which gives \(x - y = 0. \)

Question 3. Which of the following subsets of vectors are vector subspaces. In each case either check the subspace properties or point out a property that fails and explain why.

(a) In the real 2-space \(\mathbb{R}^2 \) the subset \(S \subset \mathbb{R}^2 \) of all vectors with integral coordinates:
\[S = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid a, b \in \mathbb{Z} \right\}. \]

(b) In the complex space \(\mathbb{C}^\infty \) of all sequences \((a_1, a_2, \ldots, a_n, \ldots)\) of complex numbers (with the term-by-term addition and scaling) the subset \(B \subset \mathbb{C}^\infty \) of all bounded sequences:
\[B = \left\{ (a_i)_{i=1}^\infty \in \mathbb{C}^\infty \mid \text{there exists a positive real constant } c > 0 \text{ so that } |a_i| < c \text{ for all } i \right\}. \]

Answer 3. In part (a) \(S \) is not a subspace. It is closed under addition but it is not closed under scaling. Specifically if we scale a vector with integral coordinates by a general real number we will get a vector with non-integral coordinates. For instance
\[\sqrt{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}. \]
In part (b) \(S \) is a subspace. To check this suppose \(a = (a_i) \) and \(b = (b_i) \) are two bounded sequences of complex numbers and \(\alpha \) is a real number.

- Since \((a_i)\) is bounded we can find a positive real constant \(A \) so that \(|a_i| < A\) for all \(i = 1, 2, \ldots \). Similarly since \((b_i)\) is bounded we can find a positive real constant \(B \) so that \(|b_i| < B\) for all \(i = 1, 2, \ldots \).
Consider the sum \(a + b \). Since the sum of sequences is defined term by term it follows that
\[
a + b = (a_i + b_i)_{i=1}^{\infty}.
\]
But by the triangle inequality for the absolute value we have
\[
|a_i + b_i| \leq |a_i| + |b_i| < A + B,
\]
for all \(i = 1, 2, \ldots \). Therefore \(a + b \) is a bounded sequence as well. This shows that the sum in \(\mathbb{R}^\infty \) preserves the condition of being bounded.

• Since the scaling of a sequence is defined term by term we have that
\[
\alpha a = (\alpha \cdot a_i)_{i=1}^{\infty}.
\]
Then by the multiplicativity of the absolute value we have
\[
|\alpha \cdot a_i| = |\alpha| \cdot |a_i| < |\alpha| \cdot A
\]
for all \(i = 1, 2, \ldots \). This shows that scaling in \(\mathbb{R}^\infty \) preserves the condition of being bounded.

Question 4. Let Pol be the vector space of all polynomials with real coefficients in one variable. Suppose that \(V \subset Pol \) is a vector subspace such that:

• For every \(k = 0, 1, 2, \ldots, n \) the subspace \(V \) contains a polynomial of degree exactly \(k \).

 In other words for every \(k = 0, 1, 2, \ldots, n \) we have a polynomial \(p_k(x) \in V \) such that
 \[p_k(x) = c_k x^k + \text{lower degree terms}, \text{ and } c_k \neq 0. \]

• \(V \) does not contain any polynomials of degree \(> n \).

Show that \(V \) must be equal to the subspace \(Pol_n \subset Pol \) of polynomials of degree at most \(n \).

Answer 4. By assumption \(V \) does not contain any polynomials of degree \(> n \). Therefore \(V \subset Pol_n \). To show that \(V = Pol_n \) it suffices to check that \(V \) contains a set of polynomials that spans \(Pol_n \).

We are given polynomials \(p_0(x), p_1(x), \ldots, p_n(x) \) in \(V \) such that for every \(k = 0, 1, \ldots, n \) we have
\[
p_k(x) = c_k x^k + \text{lower degree terms}, \text{ and } c_k \neq 0.
\]
We can use these polynomials to argue that \(V \) contains all monomials \(1, x, x^2, \ldots, x^n \).

We will argue by induction on \(n \).
Base: $n = 0$. We need to show that $1 \in V$. By assumption we know that we have a polynomial $p_0(x) \in V$ where

$$p_0(x) = c_0, \quad \text{and} \quad c_0 \neq 0.$$

Since V is a vector subspace we will have that $\frac{1}{c_0}p_0(x) \in V$ But $\frac{1}{c_0}p_0(x) = 1$ hence $1 \in V$.

Step: Suppose that we know that if V contains polynomials $p_0(x), \ldots, p_{n-1}(x)$ satisfying

$$p_k(x) = c_kx^k + \text{lower degree terms, with } c_k \neq 0.$$

for $k = 1, \ldots, n - 1$, then V contains the monomials $1, x, \ldots, x^{n-1}$. Suppose in addition V contains a polynomial $p_n(x)$ such that

$$p_n(x) = c_nx^n + \text{lower degree terms, with } c_n \neq 0.$$

We need to show that V contains the monomial x^n.

Explicitly

$$p_n(x) = c_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} \cdots a_1x + a_0,$$

and so

$$x^n = \frac{1}{c_n}p_n(x) - \frac{a_{n-1}}{c_n}x^{n-1} - \cdots - \frac{a_1}{c_n}x - \frac{a_0}{c_n}.$$

Since $p_n(x) \in V$ and by the inductive assumption $1, x, \ldots, x^{n-1}$ it follows that the right hand side is a linear combination of polynomials in V. Since V is a vector space this implies $x^n \in V$ and completes the check.

\[\Box\]

Question 5. Let $U \subset \text{Mat}_{2\times2}(\mathbb{R})$ be the subspace of all symmetric matrices and $V \subset \text{Mat}_{2\times2}(\mathbb{R})$ be the subspace of all strictly upper triangular matrices:

$$U = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \bigg| a, b, c \in \mathbb{R} \right\},$$

$$V = \left\{ \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \bigg| d \in \mathbb{R} \right\}.$$

(a) Show that $U \oplus V = \text{Mat}_{2\times2}(\mathbb{R})$.

(b) Decompose the matrix $E = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$ into a sum $E = A + B$ with $A \in U$ and $B \in U$.

4
Answer 5. For part (a) consider the subspace \(W := U + V \subset \text{Mat}_{2 \times 2}(\mathbb{R}) \). Note that \(U \cap V = \{0\} \). Indeed, if \(X \in U \cap V \) is a matrix which is both in \(U \) and \(V \), then on one hand we have
\[
X = \begin{pmatrix} a & b \\ b & c \end{pmatrix},
\]
and on the other
\[
X = \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix}.
\]
Therefore we must have \(b = d \), and \(a = 0 \), \(b = 0 \), and \(c = 0 \). This shows that \(W = U \oplus V \). But every matrix in \(U \) can be written uniquely as
\[
\begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.
\]
Therefore
\[
\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}
\]
is a basis of \(U \) and so \(\dim U = 3 \). Similarly, note that every matrix in \(V \) is a scaling of \(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \) and thus \(\dim V = 1 \). Since \(W = U \oplus V \) this implies that \(\dim W = \dim U + \dim V = 3 + 1 = 4 \). But \(\dim \text{Mat}_{2 \times 2}(\mathbb{R}) \) is also equal to 4 and since \(W \) is a subspace we must have \(W = \text{Mat}_{2 \times 2}(\mathbb{R}) \). This proves part (a).

For part (b) we need to solve the equation
\[
\begin{pmatrix} 1 \\ 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix} + \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix}.
\]
This is equivalent to \(1 = a \), \(1 = b + d \), \(2 = b \), and \(-1 = c \), and so we get
\[
\begin{pmatrix} 1 \\ 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.
\]

\(\square \)

Question 6. Let \(S \) be a finite set and let \(V = (\mathcal{P}(S), +, \cdot) \) be the power set of \(S \) considered as a vector space over \(\mathbb{F}_2 \) where for \(A, B \subset S \), and \(\alpha \in \mathbb{F}_2 \) we have
\[
A + B = A \Delta B = A \cup B - A \cap B
\]
\[
\alpha \cdot A = \begin{cases} A, & \text{if } \alpha = 1, \\ \emptyset, & \text{if } \alpha = 0, \end{cases}
\]
Suppose that \(X, Y, Z \) are subsets in \(S \) such that \(X \not\subset Y \cup Z \), \(Y \not\subset X \cup Z \), and \(Z \not\subset X \cup Y \). Show that \(X, Y, \) and \(Z \) are linearly independent when viewed as vectors in \(V \).
This shows that \(X \not\subset Z \) and subsets in the (1) are never empty. \[Y + X \not\subset Z. \]
Since in \(V \) the zero vector corresponds to the empty subset \(\emptyset \subset S \), we need to show that the subsets in the (1) are never empty.

First note that \(\emptyset \) is contained in every subset, and so the conditions \(X \not\subset Y \cup Z \), \(Y \not\subset X \cup Z \), and \(Z \not\subset X \cup Y \) imply that none of \(X \), \(Y \), and \(Z \) can be empty.

Let us examine \(X + Y \) next. By definition \(X + Y = (X \cup Y) - (X \cap Y) \) consists of all points in the union of \(X \) and \(Y \) which do not belong simultaneously in \(X \) and \(Y \). But we know that \(X \not\subset Y \cup Z \) so we know that there is a point \(x \in X \) which does not belong to \(Y \) and does not belong to \(Z \). Hence \(x \not\in X \cap Y \) and so \(x \in (X \cup Y) - (X \cap Y) \). This shows that \((X \cup Y) - (X \cap Y) \) is not empty or equivalently that \(X + Y \not= 0 \). The same reasoning shows that \(X + Z \not= 0 \) and that \(Y + Z \not= 0 \).

Finally note that we chose \(x \in X \) such that \(x \not\in Y \) and \(x \not\in Z \). Thus \(x \in X + Y = (X \cup Y) - (X \cap Y \not\subset (X + Y) \cap Z \not\subset (X + Y) \cap Z \). Therefore \(x \in X + Y + Z = ((X + Y) \cup Z) - (X + Y) \cap Z \). This shows that \(X + Y + Z \not= \emptyset \) or equivalently \(X + Y + Z \not= 0 \).

Question 7. Let \(V \) and \(W \) be real vector spaces with bases \(\mathcal{E} = \{ e_1, e_2, e_3 \} \) and \(\mathcal{F} = \{ f_1, f_2 \} \) respectively. Suppose that the linear map \(T : V \to W \) has matrix \(\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 6 \end{pmatrix} \). Find the matrix of \(T \) in the bases \(\mathcal{E}' = \{ e_1, e_1 + e_2, e_1 + e_2 + e_3 \} \) and \(\mathcal{F}' = \{ f_1, f_1 + f_2 \} \).

Answer 7. Write \(e'_1, e'_2, e'_3 \) for the elements of the basis \(\mathcal{E}' \) and \(f'_1, f'_2 \) for the elements of the basis \(\mathcal{F}' \). To compute the matrix of \(T \) in these bases we need to compute the coordinates of the vectors in the collection \(T(\mathcal{E}') \) in the basis \(\mathcal{F}' \). Using the matrix of \(T \) in the bases
and \(\mathbb{F} \) we compute
\[
T(e'_1) = T(e_1) = 0 \cdot f_1 + 3 \cdot f_2 \\
= 3f_2,
\]
\[
T(e'_2) = T(e_1 + e_2) = T(e_1) + T(e_2) = (3f_2) + (1 \cdot f_1 + 4 \cdot f_2) \\
= f_1 + 7f_2,
\]
\[
T(e'_3) = T(e_1 + e_2 + e_3) = T(e_1) + T(e_2) + T(e_3) = \\
= (3f_2) + (1 \cdot f_1 + 4 \cdot f_2) + (2 \cdot f_1 + 6 \cdot f_6) \\
= 3f_1 + 13f_2.
\]

This gives the vectors \(T(\mathbb{E}') \) in terms of the basis \(\mathbb{F} \). To get expressions for these vectors in terms of the basis \(\mathbb{F}' \) we need to solve for the vectors in \(\mathbb{F} \) in terms of the vectors in \(\mathbb{F}' \). This is straightforward:
since \(f'_1 = f_1 \) and \(f'_2 = f_1 + f_2 \) we get \(f_1 = f'_1 \) and \(f_2 = -f'_1 + f'_2 \). Substituting these expression in the previous formulas gives
\[
T(e'_1) = 3f_2 = -3f'_1 + 3f'_2, \\
T(e'_2) = f_1 + 7f_2 = -6f'_1 + 7f'_2, \\
T(e'_3) = 3f_1 + 13f_2 = -10f'_1 + 13f'_2.
\]

Hence the matrix of \(T \) in the bases \(\mathbb{E}' \) and \(\mathbb{F}' \) is
\[
\begin{pmatrix}
-3 & -6 & -10 \\
3 & 7 & 13
\end{pmatrix}.
\]

Question 8. Let \(V \) be a vector space over a field \(\mathbb{K} \) and let \(f : V \to \mathbb{K} \) be a linear function which is not identically zero. Consider the subspace \(U = \{ x \in V \mid f(x) = 0 \} \) and let \(a \in V \) be any vector that does not belong to \(U \).

(a) Show that for every vector \(v \in V \) the vector
\[
x = v - \frac{f(v)}{f(a)} a
\]

is well defined and belongs to \(U \).

(b) Show that \(U \oplus \text{span}(a) = V \).

Answer 8. For part (a) note that \(a \not\in U \) means \(f(a) \neq 0 \) in \(\mathbb{K} \). Therefore we can divide by \(f(a) \) in \(\mathbb{K} \) and so the vector
\[
x = v - \frac{f(v)}{f(a)} a
\]
is well defined. To check that this vector belongs to \(U \) we evaluate \(f \) on \(x \):
\[
f(x) = f \left(v - \frac{f(v)}{f(a)} a \right) = f(v) - \frac{f(v)}{f(a)} f(a) = f(v) - f(v) = 0.
\]
This shows that \(x \in U \).

For part (b) note that part (a) implies that any vector \(v \in V \) is equal to the sum
\[
v = x + \frac{f(v)}{f(a)} a,
\]
and that \(x \in U \). Since \((f(v)/f(a)) \cdot a \) is a scaling of \(a \) it belongs to \(\text{span}(a) \) and so \(V = U + \text{span}(a) \).

To check that this is a direct sum we need to check that \(U \cap \text{span}(a) = \{0\} \).

Suppose \(x \in U \cap \text{span}(a) \). Then \(f(x) = 0 \) and \(x = \alpha a \) for some \(\alpha \in \mathbb{K} \). But then \(0 = f(x) = f(\alpha a) = \alpha f(a) \). Since \(f(a) \neq 0 \) it follows that we must have \(\alpha = 0 \). This implies that \(x = 0 \cdot a = 0 \) and so \(U \cap \text{span}(a) = \{0\} \).

\(\square \)