
Solutions to the Midterm Exam, Math 370,
Spring 2016

Question 1. Let A ∈ Matm×n(R) and let B ∈ Matm×k(R). Let b1, . . . , bk be the columns
of B and suppose that for every i = 1, . . . , k the rank of the augmented matrix [A|bi] is equal
to the rank of A. Prove that rank[A|B] = rank(A).

Answer 1. The rank r of A is by definition the number of non-zero rows in the row-
reduced echelon form R of A. R is obtained by performing a sequence of elementary row
operations on A. Performing the same sequence of elementary row operations on [A|bi] will
result in a matrix of the form [R|b′i]. If for some zero row of R the corresponding row of [R|b′i]
is non-zero, then the row reduced echelon form of [A|bi] will have at least r + 1 non-zero
rows. But rank(A) = rank([A|bi]) = r so this is impossible. In other words, all entries in
b′i corresponding to the zero rows of R must be equal to zero and hence [R|b′i] is the row
reduced echelon form of [A|bi].

Next perform the same sequence of elementary row operations on the matrix [A|B]. This
will result in the matrix [R|B′], where B′ is the m × k matrix with columns b′1, . . . , b

′
k. By

the previous reasoning, all the entries in the columns b′i that correspond to zero rows of R
are themselves zero. Therefore a row of R is zero if and only if the corresponding row of
[R|B′] is zero. This shows that the rank of [A|B] is r. 2

Question 2.

(a) Find a polynomial f(x) of degree 3, with real coefficients, and such that f(−2) = 1,
f(−1) = 3, f(1) = 13, and f(2) = 33.

(b) Prove that there is no polynomial g(x) of degree 2 , with real coefficients, and such
that g(−2) = 1, g(−1) = 3, g(1) = 13, and g(2) = 33.

Answer 2. If x1, . . .xn are distinct real numbers, and c1, . . . , cn are given real numbers,
then we proved in class that there is a unique polynomial f(x) of degree ≤ (n− 1) satisfying
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f(x1) = c1, f(x2) = c2, . . . , f(xn) = cn. Furthermore, by Lagrange interpolation formula
this unique polynomial has degree n and is given by

f(x) =
n∑

i=1

ci
∏
j 6=i

x− xj
xi − xj

.

Therefore the answer to (a) is

f(x) = 1 · (x+ 1)(x− 1)(x− 2)

(−2 + 1)(−2− 1)(−2− 2)
+ 3 · (x+ 2)(x− 1)(x− 2)

((−1 + 2)(−1− 1)(−1− 2)

+ 13 · (x+ 2)(x+ 1)(x− 2)

(1 + 2)(1 + 1)(1− 2)
+ 33 · (x+ 2)(x+ 1)(x− 1)

(2 + 2)(2 + 1)(2− 1)
.

For (b) note that there is a unique polynomial g of degree ≤ 3 satisfying the conditions of
(b). But f satisfies these conditions and so g = f . But f is of degree 3, so there is no g of
degree 2. 2

Question 3. Let A be an n× n matrix with real entries.

(a) Let R1, . . . , Rn be the rows of A. Suppose that R1 + 2R2 + 3R3 + · · ·+nRn is the zero
row vector. Compute det(A). Justify your answer.

(b) Suppose that sum of the even numbered columns of A is equal to the sum of the odd
numbered columns of A. Compute det(A). Justify your answer.

Answer 3. (a) Let A′ be the matrix obtained from A by the sequence of elementary row
operations:

• Replace row1 by row1 + 2row2;

• Replace row1 by row1 + 3row3;

...

• Replace row1 by row1 + irowi;

...

• Replace row1 by row1 + nrown;



Then the first row of A′ is equal to R1 + 2R2 + · · · + nRn = 0. Therefore det(A′) = 0. But
these are elementary row operations of type (i) and so do not change the determinant. Hence
det(A) = det(A′) = 0.

(b) Since det(A) = det(At) the question is equivalent to asking for determinant of At if we
know that the sum of the even numbered rows of At is equal to the sum of its odd numbered
rows. Let B be the matrix obtained from At by adding in sequence row3, row5, etc. to
row1, also adding in a sequence row4, row6, etc. to row2. By assumption then the first two
rows of B will be equal, and hence det(B) = 0. But B is obtained from At by elementary
row operations of the first kind and this has the same determinant at At. This shows that
det(A) = det(At) = 0. 2

Question 4. For each of the following statements determine if they are True or False.
In each case give a reason or a counter example.

(a) The subgroup G of S8 generated by the transpositions (12), (34), (56), and (78) is
commutative.

(b) If σ ∈ S100 is an element of order 5, then σ is a cycle.

(c) If σ ∈ S4 is a cycle, then any power of σ is also a cycle.

Answer 4. (a) (True) As these are disjoint transpositions they all commute with each
other. Also these are transpositions so each of them is equal to its own inverse. Therefore
every element in the group they generate is a product of copies of some of these transpositions
in some order. Since all terms of such products commute with each other, every two such
products will be interchangeable.

(b) (False) The order of an element σ in S100 is the least common multiple of the lengths of
cycles in the disjoint cycle decomposition of σ. So σ is of order 5 if and only if σ decomposes
into a product of disjoint cycles of length 5. But there are many disjoint cycles of length
5 in S100 and the product of any two of these will be order 5 and will not be a cycle. For
instance σ = (1 2 3 4 5)(6 7 8 9 10) is of order 5 and is not a cycle.
(c) (False) For instance (1 2 3 4)2 = (1 3)(2 4). 2

Question 5.

(a) Let σ, τ ∈ Sn be two permutations in n letters. Suppose σ is a cycle of length r. Prove
that τστ−1 is also cycle of length r.



(b) Suppose that σ ∈ Sn is an odd permutation. Show that the equation σξ = ξσ2 can
not be solved with any ξ ∈ Sn.

Answer 5. (a) Let σ = (i1 i2 . . . ir), and let j ∈ {1, . . . , n}. Then

• τστ−1(j) = j if j is not one of τ(i1), τ(i2), . . . , τ(ir)), and

• τστ−1(τ(i1)) = τ(i2), τστ
−1(τ(i2)) = τ(i3), . . . , τστ−1(τ(ir)) = τ(i1).

In other words τστ−1 is the cycle (τ(i1) τ(i2) . . . τ(ir)).

(b) If there is a ξ such that σξ = ξσ2, then sgn(σξ) = sgn(ξσ2). Since the sign function is a
homomorphism this gives

sgn(σ)sgn(ξ) = sgn(ξ)sgn(σ)2.

But sgn(xi) is either +1 or −1 so it can be cancelled form both sides. Also sgn(σ) = −1 since σ is
odd. This gives −1 = 1 which is a contradiction. 2

Question 6. Let X and Y be two sets and let f : X → Y be a bijection. Show that the map
φ : S(X)→ S(Y ) given by φ(σ) = f ◦ σ ◦ f−1 is an isomorphism of symmetric groups.

Answer 6. First we need to check that the map φ is well defined. Since the inverse of a bijection
is a bijection, and the composition of bijections is a bijection it follows that f ◦σ ◦f−1 is a bijection
from Y to itself. Therefor φ(σ) belongs to S(Y ) and φ is well defined.

Secondly we must check that φ is a homomorphism. Suppose σ, τ ∈ S(X). Then

φ(στ) = f ◦ στ ◦ f−1

= f ◦ σ ◦ τ ◦ f−1

= f ◦ σ ◦ idX ◦ τ ◦ f−1

= f ◦ σ ◦ f−1 ◦ f ◦ τ ◦ f−1

= φ(σ) ◦ φ(τ)

= φ(σ)φ(τ).

Finally we have to check that φ is bijective. The map ψ : S(Y )→ S(X) given by ψ(α) = f−1 ◦α◦f
obviously satisfies φ(ψ(α) = α and ψ(φ(σ)) = σ. Hence φ and ψ are inverse functions and so φ is
a bijection. 2


