Math 370, SAMPLE FINAL EXAM

1. Find the number of conjugacy classes in the groups H_{8}, S_{6}, and D_{4}.
2. Let G be a group and suppose $x, y, z \in G$. Prove that $x y z, y z x$ and $z x y$ all have the same order in G. Will $x z y$ have the same order as well?
3. Suppose G is a group and let $N \triangleleft G$ be a finite normal subgroup in G. Show that G must contain a subgroup $H<G$ of finite index, with the property that every element in H commutes with every element in N.
4. Describe the automorphism group $\operatorname{Aut}\left(S_{3}\right)$.
5. Let G be a group with the property that $g^{2}=1$ for all $g \in G$. Show that G is abelian and that G (written additively) can be regarded as a vector space over the field \mathbb{F}^{2} of two elements.
6. Describe all normal subgroups in A_{4}. Show by example that $K \triangleleft H$ and $H \triangleleft G$ does not necessarily imply $K \triangleleft G$.
7. Let A be an abelian group, and let A_{1}, A_{2}, A_{3} be subgroups. Suppose that $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=1, \operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{3}\right|\right)=1$, and $\operatorname{gcd}\left(\left|A_{2}\right|,\left|A_{3}\right|\right)=1$.

- Show that $A_{1} A_{2} A_{3}$ is a subgroup in A.
- Show that $A_{1} A_{2} A_{3}$ is a direct product. That is, show that $A_{1} A_{2} A_{3}=A_{1} \times A_{2} \times A_{3}$.

8. Let G be a noncommutative group. Prove that $G / Z(G)$ can not be cyclic.
9.

(a) Suppose F is a field, and let V be a vector space over F. Show that the abelian group $(V,+)$ can not be an infinite cyclc group.
(b) Suppose $(V,+)$ is an abelian group. Show that $(V,+)$ can be endowed with the structure of a vector space over \mathbb{Q} if and only if $0 \in V$ is the only element of finite order in the group $(V,+)$, and for every $n \in \mathbb{Z}$ and every $v \in V$ the equation

$$
\underbrace{x+\cdots+x}_{n \text {-times }}=v
$$

has a solution in V.
10. Let V be the real vector space consisting of all real valued functions on \mathbb{R}. Let $E \subset V$ be the subspace consisting of all even functions and let $O \subset V$ be the subspace consisting of all odd functions. Show that $V=E \oplus O$.
11. Let F be a finite field with q elements and let V be an n-dimensional vector space over F.
(a) Find the number of bases in V.
(b) Find the number of 2-dimensonal subspaces in V.
12. Let F be a field. Determine which of the following collections of matrices form a subspace in the vector space $\operatorname{Mat}_{n \times n}(F)$, and compute the dimension of this subspace.
(a) All symmetric matrices.
(b) All matrices with zero determinant.
(c) All matrices with zero trace.
13. Consider the subspaces $V, W \subset \mathbb{R}^{3}$ given by

$$
V=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]\right) \quad \text { and } \quad W=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-3
\end{array}\right]\right)
$$

(a) Find a basis of $V \cap W$.
(b) Find a basis of $V+W$.
14. Let V be a vector space over a field F and let A and B be subspaces in V. Suppose that $A \cup B=V$. Prove that either $V=A$ or $V=B$.
15. Let F be a finite field and let $p=\operatorname{char}(F)$.
(a) Prove that F contains \mathbb{F}_{p} as a subfield.
(b) Prove that addition and multiplication in F endow F with the structure of a vector space over \mathbb{F}_{p}.
(c) Prove that F must have p^{n} elements for some positive integer n.
16. Let n be an integer and let F be the subset

$$
F=\left\{\left.\left[\begin{array}{cc}
x & y \\
n y & x
\end{array}\right] \right\rvert\, x, y \in \mathbb{F}_{5}\right\} \subset \operatorname{Mat}_{2 x 2}\left(\mathbb{F}_{5}\right)
$$

equipped with the usual operations of addition and multiplication of matrices. Find all values of n for which F is a field.

