Math 370, SAMPLE FINAL EXAM

1. Find the number of conjugacy classes in the groups H_8 , S_6 , and D_4 .

2. Let G be a group and suppose $x, y, z \in G$. Prove that xyz, yzx and zxy all have the same order in G. Will xzy have the same order as well?

3. Suppose G is a group and let $N \triangleleft G$ be a finite normal subgroup in G. Show that G must contain a subgroup H < G of finite index, with the property that every element in H commutes with every element in N.

4. Describe the automorphism group $Aut(S_3)$.

5. Let G be a group with the property that $g^2 = 1$ for all $g \in G$. Show that G is abelian and that G (written additively) can be regarded as a vector space over the field \mathbb{F}^2 of two elements.

6. Describe all normal subgroups in A_4 . Show by example that $K \triangleleft H$ and $H \triangleleft G$ does not necessarily imply $K \triangleleft G$.

7. Let A be an abelian group, and let A_1 , A_2 , A_3 be subgroups. Suppose that $gcd(|A_1|, |A_2|) = 1$, $gcd(|A_1|, |A_3|) = 1$, and $gcd(|A_2|, |A_3|) = 1$.

- Show that $A_1A_2A_3$ is a subgroup in A.
- Show that $A_1A_2A_3$ is a direct product. That is, show that $A_1A_2A_3 = A_1 \times A_2 \times A_3$.

8. Let G be a noncommutative group. Prove that G/Z(G) can not be cyclic.

- 9.
 - (a) Suppose F is a field, and let V be a vector space over F. Show that the abelian group (V, +) can not be an infinite cyclc group.
 - (b) Suppose (V, +) is an abelian group. Show that (V, +) can be endowed with the structure of a vector space over \mathbb{Q} if and only if $0 \in V$ is the only element of finite order in the group (V, +), and for every $n \in \mathbb{Z}$ and every $v \in V$ the equation

$$\underbrace{x + \dots + x}_{n\text{-times}} = v$$

has a solution in V.

10. Let V be the real vector space consisting of all real valued functions on \mathbb{R} . Let $E \subset V$ be the subspace consisting of all even functions and let $O \subset V$ be the subspace consisting of all odd functions. Show that $V = E \oplus O$.

11. Let F be a finite field with q elements and let V be an n-dimensional vector space over F.

- (a) Find the number of bases in V.
- (b) Find the number of 2-dimensional subspaces in V.

12. Let F be a field. Determine which of the following collections of matrices form a subspace in the vector space $Mat_{n \times n}(F)$, and compute the dimension of this subspace.

- (a) All symmetric matrices.
- (b) All matrices with zero determinant.
- (c) All matrices with zero trace.
- **13.** Consider the subspaces $V, W \subset \mathbb{R}^3$ given by

$$V = \operatorname{Span}\left(\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\3 \end{bmatrix} \right) \quad and \quad W = \operatorname{Span}\left(\begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-3 \end{bmatrix} \right)$$

- (a) Find a basis of $V \cap W$.
- (b) Find a basis of V + W.

14. Let V be a vector space over a field F and let A and B be subspaces in V. Suppose that $A \cup B = V$. Prove that either V = A or V = B.

15. Let F be a finite field and let p = char(F).

- (a) Prove that F contains \mathbb{F}_p as a subfield.
- (b) Prove that addition and multiplication in F endow F with the structure of a vector space over \mathbb{F}_p .
- (c) Prove that F must have p^n elements for some positive integer n.

16. Let n be an integer and let F be the subset

$$F = \left\{ \begin{bmatrix} x & y \\ ny & x \end{bmatrix} \middle| x, y \in \mathbb{F}_5 \right\} \subset \operatorname{Mat}_{2x2}(\mathbb{F}_5)$$

equipped with the usual operations of addition and multiplication of matrices. Find all values of n for which F is a field.