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1 Problems

(1) Let A be a 3 × 3 matrix whose entries are real numbers such that
A2 = 0. Show that I3 + A is invertible.

Solution: 2.1

(2) Let A and B be symmetric n×n matrices. Prove that AB is symmetric
if and only if AB = BA.

Solution: 2.2

(3) Let a1, a2, . . . , an be given real numbers. Calculate

det(A) = det


a1 − a2 a2 − a3 . . . an−1 − an an − a1
a2 − a3 a3 − a4 . . . an − a1 a1 − a2

...
... . . .

...
...

an−1 − an an − a1 . . . an−3 − an−2 an−2 − an−1
an − a1 a1 − a2 . . . an−1 − an−2 an−1 − an



Solution: 2.3

(4) Let G be an abelian group and n a fixed positive integer. Show that
the subset of all elements in G whose order divides n is a subgroup in
G. Will this be true if G is non-abelian?

Solution: 2.4
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(5) Determine the automorphism group of a cyclic group of order 10.

Solution: 2.5

(6) Let G be a group and let x ∈ G be a fixed element. Consider the set
Z = {y ∈ G|xy = yx}.

(a) Show that Z is a subgroup of G.

(b) Let H < G be the cyclic subgroup generated by x. Show that H
is a normal subgroup of Z.

Solution: 2.6

(7) Consider the subsets H and N of SL2(R) defined by

N =

{[
a b
c d

]
∈ SL2(R)

∣∣∣∣ ac = 0 and bd = 0

}
and

H =

{[
a 0
0 a−1

]∣∣∣∣ a 6= 0

}
Show that N is a subgroup of SL2(R) and H is a subgroup of H.

Solution: 2.7

(8) Let G be an abelian group of order 12, and let ϕ : G → G be the
homomorphism given by ϕ(x) = x11 for all x ∈ G. Show that ϕ is an
isomorphism.

Solution: 2.8
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(9) The numbers 20604, 53227, 25755, 20927, and 289 are all divisible by
17. Use Cramer’s rules to show that

det


2 0 6 0 4
5 3 2 2 7
2 5 7 5 5
2 0 9 2 7
0 0 2 8 9


is also divisible by 17.

Solution: 2.9

(10) Consider the elements

x =

(
1 2 3 4
3 2 1 4

)
y =

(
1 2 3 4
4 1 3 2

)
in the symmetric group S4 of permuations on four letters. Show that x
and y are not conjugate in S4, i.e. show that there is no element σ ∈ S4

satisfying y = σxσ−1. (Hint: Compute the sign of x and y.)

Solution: 2.10

(11) Let G be any group. Let a ∈ G be an element of order 15. Show that
there exists an element x ∈ G such that x7 = a.

Solution: 2.11

(12) Let A ∈ Matm×n(R), and let B ∈ Matn×m(R). Suppose AB = Im and
BA = In. Show that m = n.

Solution: 2.12
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2 Solutions

Solution of problem 1: Recall the standard algebraic formula x2 − y2 =
(x+ y)(x− y).

Now thinking of a and b as matrices and sbstituting I3 for x and A for
y we get

(I3 + A)(I3 − A) = I23 − A2 = I3.

In other words I3 − A is the inverse matrix of I3 + A.

Solution of problem 2: AB is symmetric if and only if AB = (AB)t =
BtAt. Since both A and B are symmetric we have Bt = B and At = A
and so AB is symmetric if and only if AB = BA.

Solution of problem 3: Adding to any row of a matrix a multiple of an-
othe row does not change the determinant. So the determinant of A is
equal to the determinant of the matrix obtained from A by replacing
the last row by the sum of all rows. But the sum of all rows has all
entries equal to zero and so det(A) = 0.

Solution of problem 4: Let

H = {x ∈ G |x is of order dividing n},

and let a and b be two elements in H. We need to check that ab ∈ H,
and that a−1 ∈ H.

To check that ab ∈ H we need to compute the order of ab. First note
that a, b ∈ H implies an = bn = e. Moreover, since G is abelian we
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have
(ab)n = (ab) · (ab) · · · · · (ab)︸ ︷︷ ︸

n times

= an · bn

= e · e

= e.

Therefore ab has order dividing n.

Similarly
(a−1)n · an = (a · a−1)n = en = e.

But an = e so we get that (a−1)n · e = e, i.e. (a−1)n = e. Again this
means that the order of a−1 divides n.

This reasoning will not work if we can not switch the order of multipli-
cation of a and b. This does not prove that the statement can not be
true in a non-abelian group sinc ethre could be some other reasoning
that yields the statement. So, to show that the statement does not
hold for non-abelian groups we have to exhibit a counter example.

Consider the simplest non-abelian group S3 and let H ⊂ S3 be the
subset of all elements of order dividing 2. Then

S3 = {1, (12), (13), (23), (123), (132)},
H = {1, (12), (13), (23)}.

But (13)(12) = (123) which is of order 3. Hence H is not a subgroup.

Solution of problem 5: Let C10 = {1, x, x2, . . . , x9} be a cyclic group of
order ten. If φ : C10 → C10 is an automorphism, then φ is completely
determined by the element φ(x). The surjectivity of φ implies that all
elements in C10 should be powers of φ(x) and so φ(x) must generate
C10. In particular this means that φ(x) has order 10. On the other
hand φ(x) ∈ C10 so we can write φ(x) = xk with 0 ≤ k ≤ 9. But we
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know that xk has order 10 if and only if k and 10 are relatively prime.
So we conclude that 1, 3, 7, 9 are the only possible values of k.

Since φ is uniquely determined by φ(x) we see that Aut(C10) contains
exactly four elements φ1, φ3, φ7, and φ9, where

φ1 : C10 → C10, φ1(x
a) = xa for all a,

φ3 : C10 → C10, φ3(x
a) = x3a for all a,

φ7 : C10 → C10, φ7(x
a) = x7a for all a,

φ9 : C10 → C10, φ9(x
a) = x9a for all a.

Since φ1 is the identity map, it is the unit element of Aut(C10). Further-
more φ3 ◦ φ3(x) = φ3(φ3(x)) = φ3(x

3) = x9, i.e. φ3 ◦ φ3 = φ9. Similarly
φ3◦φ3◦φ3(x) = φ3(φ9(x)) = φ3(x

9) = x27 = x7, and so φ3◦φ3◦φ3 = φ7.
Finally φ3 ◦ φ3 ◦ φ3 ◦ φ3(x) = φ3(φ7(x)) = φ3(x

7) = x21 = x, i.e.
φ3 ◦ φ3 ◦ φ3 ◦ φ3 = φ1.

This shows that

Aut(C10) = {φ1, φ3, (φ3)
2, (φ3)

3},

i.e. Aut(C10) is a cyclic group of order 4.

Solution of problem 6: If a, b ∈ Z, then (ab)x = abx = axb = xab =
x(ab) and so ab ∈ Z. Clearly 1 · x = x = x · 1 and so 1 ∈ Z. Finally if
a ∈ Z, then a−1xa = a−1ax = x. Multiplying this identity by a−1 on
the right we get a−1x = xa−1 which yields a−1 ∈ Z.

Let now a ∈ Z and let k ∈ Z. If k > 0, then axk = axxk−1 = xaxk−1 =
. . . = xka. Multiplying the last identity by x−k on the left and on the
right gives also ax−k = x−ka and so the cyclic subgroup generated by
x is normal in Z.
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Solution of problem 7: By definition we have

N =

{[
a b
c d

]
∈ SL2(R)

∣∣∣∣ ac = 0 and bd = 0

}
=

{[
a b
c d

]
∈ SL2(R)

∣∣∣∣ either a = d = 0, c = −b−1 or b =
c = 0, d = a−1

}
In particular H ⊂ N . Now we compute[

0 b1
−b−11 0

]
·
[

0 b2
−b−12 0

]
=

[
−b1/b2 0

0 −b2/b1

]
[

0 b
−b−1 0

]−1
=

[
0 −b
b−1 0

]
[
a1 0

a−11

]
·
[
a2 0

a−12

]
=

[
a1a2 0

a−11 a−12

]
[
a 0

a−1

]−1
=

[
a−1 0

a

]
.

This shows that H < N < SL2(R).

Solution of problem 8: Since G is finite its suffices to check that ϕ is
injective. Write e for the identity element in G. Let xa and xb be two
elements in G such that ϕ(xa) = ϕ(xb). Then x11a = x11b and so the
order of xa−b must divide 11. On the other hand xa−b is an element in
G and so its order divides |G| = 12. Since 11 and 12 are coprime, it
follows that the only positive integer that divides the both 11 and 12 is
1, i.e. the order of xa−b is 1 or equivalently xa−b = e. This shows that
xa = xb and so ϕ is injective.
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Solution of problem 9: If detA = 0 then 17 divides detA and there is
nothing to prove. Assume detA 6= 0. We have

2 0 6 0 4
5 3 2 2 7
2 5 7 5 5
2 0 9 2 7
0 0 2 8 9

 ·


104

103

102

10
1

 =


20604
53227
25755
20927
289

 .
In other words, the vector

X =


104

103

102

10
1


is a solution of the linear system

AX = B,

where

A =


2 0 6 0 4
5 3 2 2 7
2 5 7 5 5
2 0 9 2 7
0 0 2 8 9

 , and B =


20604
53227
25755
20927
289

 .
By Cramer’s formulas we have

104

103

102

10
1

 =


detA1/ detA
detA2/ detA
detA3/ detA
detA4/ detA
detA5/ detA

 ,
where Ai is the matrix obtained from A by replacing the i-th column
by B. But B = 17B′, where B′ is a vector with integer entries. Thus
detA5 = 17 detA′5 where A′5 is the matrix obtained from A by replacing
the fifth column by B′. Since all entries of B′ are integers, it follows
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thatall entries of A′5 are integers and so detA′5 is an integer. From
Cramer’s formulas we have

17 detA′5 = detA,

nd so 17 divides detA.

Solution of problem 10: If we can find a σ in S4 satisfying y = σxσ−1,
then sgn(y) = sgn(σxσ−1) = sgn(σ) sgn(x) sgn(σ)−1 since

sgn : S4 → {±1}

is a homomorphism. Furthermore, {±1} is abelian and so

sgn(σ) sgn(x) sgn(σ)−1 = sgn(σ) sgn(σ)−1 sgn(x) = sgn(x).

This shows that if x and y are conjugate, then we must have sgn(x) =
sgn(y). On the other hand, by definition we have sgn(x) = det(Px)
and sgn(y) = det(Py), where Px and Py are the permutation matrices

Px =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 and Py =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


and so det(Px) = −1 and det(Py) = 1, i.e. x and y have different signs.
This contradicts the assumption that x and y are conjugate.

Solution of problem 11: The greatest common divisor of 7 and 15 is 1.
Therefore we can find integers u and v such that 7u + 15v = 1. This
follows from the classification of subgroups in Z but in this case we can
find u and v explicitly: 7 · (−2)+15 ·1 = 1. Now raising a in this power
we compute

a = a1 = a7·(−2)+15·1 =
(
a−2
)7 · a15 =

(
a−2
)7 · e =

(
a−2
)7
.
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Therefore we can take x = a−2.

Solution of problem 12: The rank of A is equal to the number of non-
zero rows in the row-reduced echelon form R of A. Since R is obtained
from A by left multiplication by elementary matrices, it follows that
RB is obtained from AB by left multiplication by elementary matrices.
Thus AB and RB are row equivalent. If R has any zero rows at the
bottom, then RB will have zero rows at the bottom. Thus rank(AB) =
rank(RB) ≤ rank(R) = rank(A). Therefore rank(A) ≥ m. Similarly
rank(BA) ≤ rank(B) and hence rank(B) ≥ n. On the other hand
rank(A) ≤ minm,n since the rank of A is equal to the number of
pivots in the row reduced echelon form of A and by the same reasoning
rank(B) ≤ minm,n. This implies rank(A) = rank(B) = m = n. G
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