Math $370 \quad$ Spring 2016 Sample Midterm with Solutions

Contents

1 Problems 2
2 Solutions 5

1 Problems

(1) Let A be a 3×3 matrix whose entries are real numbers such that $A^{2}=0$. Show that $I_{3}+A$ is invertible.

Solution: 2. 1
(2) Let A and B be symmetric $n \times n$ matrices. Prove that $A B$ is symmetric if and only if $A B=B A$.

Solution: 2.2
(3) Let $a_{1}, a_{2}, \ldots, a_{n}$ be given real numbers. Calculate

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ccccc}
a_{1}-a_{2} & a_{2}-a_{3} & \ldots & a_{n-1}-a_{n} & a_{n}-a_{1} \\
a_{2}-a_{3} & a_{3}-a_{4} & \ldots & a_{n}-a_{1} & a_{1}-a_{2} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
a_{n-1}-a_{n} & a_{n}-a_{1} & \ldots & a_{n-3}-a_{n-2} & a_{n-2}-a_{n-1} \\
a_{n}-a_{1} & a_{1}-a_{2} & \ldots & a_{n-1}-a_{n-2} & a_{n-1}-a_{n}
\end{array}\right]
$$

Solution: 2.3
(4) Let G be an abelian group and n a fixed positive integer. Show that the subset of all elements in G whose order divides n is a subgroup in G. Will this be true if G is non-abelian?

Solution: 2.4
(5) Determine the automorphism group of a cyclic group of order 10 .

Solution: 2.5
(6) Let G be a group and let $x \in G$ be a fixed element. Consider the set $Z=\{y \in G \mid x y=y x\}$.
(a) Show that Z is a subgroup of G.
(b) Let $H<G$ be the cyclic subgroup generated by x. Show that H is a normal subgroup of Z.

Solution: 2.6
(7) Consider the subsets H and N of $S L_{2}(\mathbb{R})$ defined by

$$
N=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{R}) \right\rvert\, a c=0 \text { and } b d=0\right\}
$$

and

$$
H=\left\{\left.\left[\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right] \right\rvert\, a \neq 0\right\}
$$

Show that N is a subgroup of $S L_{2}(\mathbb{R})$ and H is a subgroup of H.

Solution: 2.7
(8) Let G be an abelian group of order 12, and let $\varphi: G \rightarrow G$ be the homomorphism given by $\varphi(x)=x^{11}$ for all $x \in G$. Show that φ is an isomorphism.

Solution: 2.8
(9) The numbers $20604,53227,25755,20927$, and 289 are all divisible by 17. Use Cramer's rules to show that

$$
\operatorname{det}\left[\begin{array}{lllll}
2 & 0 & 6 & 0 & 4 \\
5 & 3 & 2 & 2 & 7 \\
2 & 5 & 7 & 5 & 5 \\
2 & 0 & 9 & 2 & 7 \\
0 & 0 & 2 & 8 & 9
\end{array}\right]
$$

is also divisible by 17 .

Solution: 2.9
(10) Consider the elements

$$
x=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \quad y=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
$$

in the symmetric group S_{4} of permuations on four letters. Show that x and y are not conjugate in S_{4}, i.e. show that there is no element $\sigma \in S_{4}$ satisfying $y=\sigma x \sigma^{-1}$. (Hint: Compute the sign of x and y.)

Solution: 2. 10
(11) Let G be any group. Let $a \in G$ be an element of order 15 . Show that there exists an element $x \in G$ such that $x^{7}=a$.

Solution: 2. 11
(12) Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$, and let $B \in \operatorname{Mat}_{n \times m}(\mathbb{R})$. Suppose $A B=I_{m}$ and $B A=I_{n}$. Show that $m=n$.

Solution: 2.12

2 Solutions

Solution of problem 1: Recall the standard algebraic formula $x^{2}-y^{2}=$ $(x+y)(x-y)$.
Now thinking of a and b as matrices and sbstituting I_{3} for x and A for y we get

$$
\left(I_{3}+A\right)\left(I_{3}-A\right)=I_{3}^{2}-A^{2}=I_{3} .
$$

In other words $I_{3}-A$ is the inverse matrix of $I_{3}+A$.

Solution of problem 2: $A B$ is symmetric if and only if $A B=(A B)^{t}=$ $B^{t} A^{t}$. Since both A and B are symmetric we have $B^{t}=B$ and $A^{t}=A$ and so $A B$ is symmetric if and only if $A B=B A$.

Solution of problem 3: Adding to any row of a matrix a multiple of anothe row does not change the determinant. So the determinant of A is equal to the determinant of the matrix obtained from A by replacing the last row by the sum of all rows. But the sum of all rows has all entries equal to zero and so $\operatorname{det}(A)=0$.

Solution of problem 4: Let

$$
H=\{x \in G \mid x \text { is of order dividing } n\}
$$

and let a and b be two elements in H. We need to check that $a b \in H$, and that $a^{-1} \in H$.

To check that $a b \in H$ we need to compute the order of $a b$. First note that $a, b \in H$ implies $a^{n}=b^{n}=e$. Moreover, since G is abelian we
have

$$
\begin{aligned}
(a b)^{n} & =\underbrace{(a b) \cdot(a b) \cdots \cdots(a b)}_{n \text { times }} \\
& =a^{n} \cdot b^{n} \\
& =e \cdot e \\
& =e .
\end{aligned}
$$

Therefore $a b$ has order dividing n.
Similarly

$$
\left(a^{-1}\right)^{n} \cdot a^{n}=\left(a \cdot a^{-1}\right)^{n}=e^{n}=e .
$$

But $a^{n}=e$ so we get that $\left(a^{-1}\right)^{n} \cdot e=e$, i.e. $\left(a^{-1}\right)^{n}=e$. Again this means that the order of a^{-1} divides n.

This reasoning will not work if we can not switch the order of multiplication of a and b. This does not prove that the statement can not be true in a non-abelian group sinc ethre could be some other reasoning that yields the statement. So, to show that the statement does not hold for non-abelian groups we have to exhibit a counter example.

Consider the simplest non-abelian group S_{3} and let $H \subset S_{3}$ be the subset of all elements of order dividing 2 . Then

$$
\begin{aligned}
S_{3} & =\{\mathbf{1},(12),(13),(23),(123),(132)\}, \\
H & =\{\mathbf{1},(12),(13),(23)\} .
\end{aligned}
$$

But $(13)(12)=(123)$ which is of order 3 . Hence H is not a subgroup.

Solution of problem 5: Let $C_{10}=\left\{1, x, x^{2}, \ldots, x^{9}\right\}$ be a cyclic group of order ten. If $\phi: C_{10} \rightarrow C_{10}$ is an automorphism, then ϕ is completely determined by the element $\phi(x)$. The surjectivity of ϕ implies that all elements in C_{10} should be powers of $\phi(x)$ and so $\phi(x)$ must generate C_{10}. In particular this means that $\phi(x)$ has order 10. On the other hand $\phi(x) \in C_{10}$ so we can write $\phi(x)=x^{k}$ with $0 \leq k \leq 9$. But we
know that x^{k} has order 10 if and only if k and 10 are relatively prime. So we conclude that $1,3,7,9$ are the only possible values of k.

Since ϕ is uniquely determined by $\phi(x)$ we see that $\operatorname{Aut}\left(C_{10}\right)$ contains exactly four elements $\phi_{1}, \phi_{3}, \phi_{7}$, and ϕ_{9}, where

$$
\begin{aligned}
& \phi_{1}: C_{10} \rightarrow C_{10}, \quad \phi_{1}\left(x^{a}\right)=x^{a} \text { for all } a, \\
& \phi_{3}: C_{10} \rightarrow C_{10}, \quad \phi_{3}\left(x^{a}\right)=x^{3 a} \text { for all } a, \\
& \phi_{7}: C_{10} \rightarrow C_{10}, \quad \phi_{7}\left(x^{a}\right)=x^{7 a} \text { for all } a, \\
& \phi_{9}: C_{10} \rightarrow C_{10}, \quad \phi_{9}\left(x^{a}\right)=x^{9 a} \text { for all } a .
\end{aligned}
$$

Since ϕ_{1} is the identity map, it is the unit element of $\operatorname{Aut}\left(C_{10}\right)$. Furthermore $\phi_{3} \circ \phi_{3}(x)=\phi_{3}\left(\phi_{3}(x)\right)=\phi_{3}\left(x^{3}\right)=x^{9}$, i.e. $\phi_{3} \circ \phi_{3}=\phi_{9}$. Similarly $\phi_{3} \circ \phi_{3} \circ \phi_{3}(x)=\phi_{3}\left(\phi_{9}(x)\right)=\phi_{3}\left(x^{9}\right)=x^{27}=x^{7}$, and so $\phi_{3} \circ \phi_{3} \circ \phi_{3}=\phi_{7}$. Finally $\phi_{3} \circ \phi_{3} \circ \phi_{3} \circ \phi_{3}(x)=\phi_{3}\left(\phi_{7}(x)\right)=\phi_{3}\left(x^{7}\right)=x^{21}=x$, i.e. $\phi_{3} \circ \phi_{3} \circ \phi_{3} \circ \phi_{3}=\phi_{1}$.
This shows that

$$
\operatorname{Aut}\left(C_{10}\right)=\left\{\phi_{1}, \phi_{3},\left(\phi_{3}\right)^{2},\left(\phi_{3}\right)^{3}\right\}
$$

i.e. $\operatorname{Aut}\left(C_{10}\right)$ is a cyclic group of order 4 .

Solution of problem 6: If $a, b \in Z$, then $(a b) x=a b x=a x b=x a b=$ $x(a b)$ and so $a b \in Z$. Clearly $1 \cdot x=x=x \cdot 1$ and so $1 \in Z$. Finally if $a \in Z$, then $a^{-1} x a=a^{-1} a x=x$. Multiplying this identity by a^{-1} on the right we get $a^{-1} x=x a^{-1}$ which yields $a^{-1} \in Z$.
Let now $a \in Z$ and let $k \in \mathbb{Z}$. If $k>0$, then $a x^{k}=a x x^{k-1}=x a x^{k-1}=$ $\ldots=x^{k} a$. Multiplying the last identity by x^{-k} on the left and on the right gives also $a x^{-k}=x^{-k} a$ and so the cyclic subgroup generated by x is normal in Z.

Solution of problem 7: By definition we have

$$
\begin{aligned}
N & =\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{R}) \right\rvert\, a c=0 \text { and } b d=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{R}) \left\lvert\, \begin{array}{l}
\text { either } \left.a=d=0, c=-b^{-1} \text { or } b=\right\} \\
c=0, d=a^{-1}
\end{array}\right.\right\}
\end{aligned}
$$

In particular $H \subset N$. Now we compute

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & b_{1} \\
-b_{1}^{-1} & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & b_{2} \\
-b_{2}^{-1} & 0
\end{array}\right] } & =\left[\begin{array}{cc}
-b_{1} / b_{2} & 0 \\
0 & -b_{2} / b_{1}
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & b \\
-b^{-1} & 0
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
0 & -b \\
b^{-1} & 0
\end{array}\right] \\
{\left[\begin{array}{cc}
a_{1} & 0 \\
& a_{1}^{-1}
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{2} & 0 \\
& a_{2}^{-1}
\end{array}\right] } & =\left[\begin{array}{cc}
a_{1} a_{2} & 0 \\
& a_{1}^{-1} a_{2}^{-1}
\end{array}\right] \\
{\left[\begin{array}{cc}
a & 0 \\
& a^{-1}
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
a^{-1} & 0 \\
& a
\end{array}\right]
\end{aligned}
$$

This shows that $H<N<S L_{2}(\mathbb{R})$.

Solution of problem 8: Since G is finite its suffices to check that φ is injective. Write e for the identity element in G. Let x^{a} and x^{b} be two elements in G such that $\varphi\left(x^{a}\right)=\varphi\left(x^{b}\right)$. Then $x^{11 a}=x^{11 b}$ and so the order of x^{a-b} must divide 11. On the other hand x^{a-b} is an element in G and so its order divides $|G|=12$. Since 11 and 12 are coprime, it follows that the only positive integer that divides the both 11 and 12 is 1 , i.e. the order of x^{a-b} is 1 or equivalently $x^{a-b}=e$. This shows that $x^{a}=x^{b}$ and so φ is injective.

Solution of problem 9: If $\operatorname{det} A=0$ then $17 \operatorname{divides} \operatorname{det} A$ and there is nothing to prove. Assume $\operatorname{det} A \neq 0$. We have

$$
\left[\begin{array}{ccccc}
2 & 0 & 6 & 0 & 4 \\
5 & 3 & 2 & 2 & 7 \\
2 & 5 & 7 & 5 & 5 \\
2 & 0 & 9 & 2 & 7 \\
0 & 0 & 2 & 8 & 9
\end{array}\right] \cdot\left[\begin{array}{c}
10^{4} \\
10^{3} \\
10^{2} \\
10 \\
1
\end{array}\right]=\left[\begin{array}{c}
20604 \\
53227 \\
25755 \\
20927 \\
289
\end{array}\right] .
$$

In other words, the vector

$$
X=\left[\begin{array}{c}
10^{4} \\
10^{3} \\
10^{2} \\
10 \\
1
\end{array}\right]
$$

is a solution of the linear system

$$
A X=B
$$

where

$$
A=\left[\begin{array}{lllll}
2 & 0 & 6 & 0 & 4 \\
5 & 3 & 2 & 2 & 7 \\
2 & 5 & 7 & 5 & 5 \\
2 & 0 & 9 & 2 & 7 \\
0 & 0 & 2 & 8 & 9
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{c}
20604 \\
53227 \\
25755 \\
20927 \\
289
\end{array}\right]
$$

By Cramer's formulas we have

$$
\left[\begin{array}{c}
10^{4} \\
10^{3} \\
10^{2} \\
10 \\
1
\end{array}\right]=\left[\begin{array}{c}
\operatorname{det} A_{1} / \operatorname{det} A \\
\operatorname{det} A_{2} / \operatorname{det} A \\
\operatorname{det} A_{3} / \operatorname{det} A \\
\operatorname{det} A_{4} / \operatorname{det} A \\
\operatorname{det} A_{5} / \operatorname{det} A
\end{array}\right],
$$

where A_{i} is the matrix obtained from A by replacing the i-th column by B. But $B=17 B^{\prime}$, where B^{\prime} is a vector with integer entries. Thus $\operatorname{det} A_{5}=17 \operatorname{det} A_{5}^{\prime}$ where A_{5}^{\prime} is the matrix obtained from A by replacing the fifth column by B^{\prime}. Since all entries of B^{\prime} are integers, it follows
thatall entries of A_{5}^{\prime} are integers and so $\operatorname{det} A_{5}^{\prime}$ is an integer. From Cramer's formulas we have

$$
17 \operatorname{det} A_{5}^{\prime}=\operatorname{det} A,
$$

nd so 17 divides $\operatorname{det} A$.

Solution of problem 10: If we can find a σ in S_{4} satisfying $y=\sigma x \sigma^{-1}$, then $\boldsymbol{\operatorname { s g n }}(y)=\boldsymbol{\operatorname { s g n }}\left(\sigma x \sigma^{-1}\right)=\boldsymbol{\operatorname { s g n }}(\sigma) \operatorname{sgn}(x) \operatorname{sgn}(\sigma)^{-1}$ since

$$
\operatorname{sgn}: S_{4} \rightarrow\{ \pm 1\}
$$

is a homomorphism. Furthermore, $\{ \pm 1\}$ is abelian and so

$$
\operatorname{sgn}(\sigma) \operatorname{sgn}(x) \operatorname{sgn}(\sigma)^{-1}=\operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma)^{-1} \operatorname{sgn}(x)=\operatorname{sgn}(x)
$$

This shows that if x and y are conjugate, then we must have $\operatorname{sgn}(x)=$ $\operatorname{sgn}(y)$. On the other hand, by definition we have $\operatorname{sgn}(x)=\operatorname{det}\left(P_{x}\right)$ and $\operatorname{sgn}(y)=\operatorname{det}\left(P_{y}\right)$, where P_{x} and P_{y} are the permutation matrices

$$
P_{x}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad P_{y}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

and so $\operatorname{det}\left(P_{x}\right)=-1$ and $\operatorname{det}\left(P_{y}\right)=1$, i.e. x and y have different signs. This contradicts the assumption that x and y are conjugate.

Solution of problem 11: The greatest common divisor of 7 and 15 is 1 . Therefore we can find integers u and v such that $7 u+15 v=1$. This follows from the classification of subgroups in \mathbb{Z} but in this case we can find u and v explicitly: $7 \cdot(-2)+15 \cdot 1=1$. Now raising a in this power we compute

$$
a=a^{1}=a^{7 \cdot(-2)+15 \cdot 1}=\left(a^{-2}\right)^{7} \cdot a^{15}=\left(a^{-2}\right)^{7} \cdot e=\left(a^{-2}\right)^{7}
$$

Therefore we can take $x=a^{-2}$.

Solution of problem 12: The rank of A is equal to the number of nonzero rows in the row-reduced echelon form R of A. Since R is obtained from A by left multiplication by elementary matrices, it follows that $R B$ is obtained from $A B$ by left multiplication by elementary matrices. Thus $A B$ and $R B$ are row equivalent. If R has any zero rows at the bottom, then $R B$ will have zero rows at the bottom. Thus $\operatorname{rank}(A B)=$ $\operatorname{rank}(R B) \leq \operatorname{rank}(R)=\operatorname{rank}(A)$. Therefore $\operatorname{rank}(A) \geq m$. Similarly $\operatorname{rank}(B A) \leq \operatorname{rank}(B)$ and hence $\operatorname{rank}(B) \geq n$. On the other hand $\operatorname{rank}(A) \leq \min m, n$ since the rank of A is equal to the number of pivots in the row reduced echelon form of A and by the same reasoning $\operatorname{rank}(B) \leq \min m, n$. This implies $\operatorname{rank}(A)=\operatorname{rank}(B)=m=n$. G

