Contents

1 Problems 2
2 Solutions 5
1 Problems

(1) Let V be a finite dimensional unitary space and $f : V \to V$ be a self-adjoint operator. Fix a complex number $c \in \mathbb{C}$ with $\text{Im}(c) > 0$.

(a) Show that the operator $f - c \cdot \text{id}$ is invertible.
(b) Show that the operator

$$g := (f - \bar{c} \cdot \text{id}) \cdot (f - c \cdot \text{id})^{-1}$$

unitary.
(c) Show that $g - \text{id}$ is invertible.
(d) Check that

$$f = (c \cdot g - \bar{c} \cdot \text{id})(g - \text{id})^{-1}.$$

Solution: 2.1

(2)

(a) Show that the usual exponential map

$$\exp : \mathbb{R} \to \mathbb{R}_{>0}$$

is an isomorphism of groups.
(b) Show that the complex exponential

$$\exp : \mathbb{C} \to \mathbb{C}^\times$$

is a surjective group homomorphism. Is it an isomorphism?
(c) Check if the matrix exponential

$$\exp : \mathfrak{gl}(n, \mathbb{C}) \to GL(n, \mathbb{C})$$

is a group homomorphism.
Solution: 2.2

(3) Let \mathbb{E} denote the Euclidean three space with standard coordinates (x, y, z).

Recall that physically \mathbb{E} is thought of as the space of all self-adjoint traceless operators on the space \mathbb{H} of spinor states. A direction in \mathbb{E} is a ray emanating from the origin. Every such ray can be written as $\mathbb{R}_{>0}f$ where $f \in \mathbb{E} \subset \mathcal{L}(\mathbb{H}, \mathbb{H})$. As we showed in class, specifying a direction in \mathbb{E} is equivalent to specifying a decomposition $\mathbb{H} = \mathbb{H}_+ \oplus \mathbb{H}_-$ of \mathbb{H} of two orthogonal one dimensional subspaces, where \mathbb{H}_+ is the eigenspace of f corresponding to the positive eigenvalue of f and \mathbb{H}_- is the eigenspace corresponding to the negative eigenvalue of f. The spinor state \mathbb{H}_+ is called the state of spin projection $1/2$ in the direction $\mathbb{R}_{>0}f$.

Consider an electron in \mathbb{E} whose spin projection on the positive direction of the y-axis is $1/2$. What is the probability that this electron will pass through a Stern-Gerlah machine filtering only electrons with spin projection $1/2$ on the positive direction of the z-axis?

Solution: 2.3

(4) Let V be a unitary space and let $f : V \to V$ be any linear operator.

(a) Show that f^*f and ff^* are self-adjoint operators.

(b) Show that f^*f and ff^* are positive definite if and only if f is invertible.
(5) Let Q be the algebra of quaternions. By definition Q is a real four dimensional vector space with basis $1, i, j$ and k and distributive associative product given by the multiplication table:

\[
\begin{align*}
1^2 &= 1, & 1i &= i, & 1j &= j, & 1k &= k, \\
i1 &= i, & i^2 &= -1, & ij &= k, & ik &= -j \\
j1 &= j, & ji &= -k, & j^2 &= -1, & jk &= i \\
k1 &= k, & ki &= j, & kj &= -i, & k^2 &= -1
\end{align*}
\]

For every quaternion $\alpha = a1 + bi + cj + dk \in Q$ define the conjugate quaternion $\bar{\alpha}$ by the formula

\[\bar{\alpha} = a1 - bi - cj - dk.\]

(a) Compute $\alpha \bar{\alpha}$.

(b) Prove that every $\alpha \neq 0$ has a multiplicative inverse.

Solution: 2.5
2 Solutions

Solution of problem 1.1: (a) The operator $f - c \cdot \text{id}$ can fail to be invertible only if c is an eigenvalue of f. However, since f is self-adjoint, it only has real eigenvalues and so c can not be an eigenvalue of f, in view of $\text{Im}(c) > 0$.

(b) Since f is self-adjoint, it has only real eigenvalues and we can find an orthonormal basis e_1, e_2, \ldots, e_n of V consisting of eigenvectors of f. Thus $f(e_i) = \lambda_i e_i$ with $\lambda_1, \ldots, \lambda_n$ real. In particular we get

$$
(f - \bar{c} \cdot \text{id})(e_i) = (\lambda_i - \bar{c}) \cdot e_i
$$
$$
(f - c \cdot \text{id})^{-1}(e_i) = (\lambda_i - c)^{-1} \cdot e_i.
$$

In other words, the operator $(f - \bar{c} \cdot \text{id})(f - c \cdot \text{id})^{-1}$ diagonalizes in the orthonormal basis $\{e_i\}$ and has eigenvalues

$$
\frac{\lambda_1 - \bar{c}}{\lambda_1 - c}, \frac{\lambda_2 - \bar{c}}{\lambda_2 - c}, \ldots, \frac{\lambda_n - \bar{c}}{\lambda_n - c}.
$$

Therefore in order to check that $(f - \bar{c} \cdot \text{id})(f - c \cdot \text{id})^{-1}$ is unitary, we only need to show that all the complex numbers

$$
\frac{\lambda_i - \bar{c}}{\lambda_i - c}
$$

have modulus 1. Using the fact that λ_i is real we compute

$$
\left| \frac{\lambda_i - \bar{c}}{\lambda_i - c} \right|^2 = \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} \right) \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} \right) = \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} \right) \left(\frac{\bar{\lambda}_i - c}{\lambda_i - \bar{c}} \right) =
$$
$$
= \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} \right) \left(\frac{\lambda_i - c}{\lambda_i - \bar{c}} \right) = 1,
$$

and so $g = (f - \bar{c} \cdot \text{id})(f - c \cdot \text{id})^{-1}$ must be unitary.
(c) Again \(g - \text{id} \) can fail to be invertible only if 1 is an eigenvalue of \(g \). This means that for some \(i \) we ought to have

\[
\frac{\lambda_i - \bar{c}}{\lambda_i - c} = 1
\]

or equivalently \(\bar{c} = c \). Since \(\text{Im}(c) > 0 \) this is impossible.

(d) Applying the operator \((c \cdot g - \bar{c} \cdot \text{id})(g - \text{id})^{-1}\) to the vector \(e_i \) we see that \(e_i \) is an eigenvector of \((c \cdot g - \bar{c} \cdot \text{id})(g - \text{id})^{-1}\) with eigenvalue

\[
\left(c \cdot \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} \right) - \bar{c} \right) \cdot \left(\frac{\lambda_i - \bar{c}}{\lambda_i - c} - 1 \right)^{-1}
\]

\[
= \frac{c\lambda_i - \bar{c}\lambda_i - c\bar{c}}{\lambda_i - c} \cdot \left(\frac{\lambda_i - \bar{c} - \lambda_i + c}{\lambda_i - \bar{c}} \right)^{-1}
\]

\[
= \lambda_i \cdot \frac{c - \bar{c}}{\lambda_i - c} \cdot \frac{\lambda_i - c}{c - \bar{c}} = \lambda_i.
\]

Thus \(f \) and \((c \cdot g - \bar{c} \cdot \text{id})(g - \text{id})^{-1}\) have the same eigenvectors and eigenvalues and so must be equal.

Solution of problem 1.2: (a) To show that \(\exp \) is a group homomorphism we need to check that \(\exp \) maps the identity element in \(\mathbb{R} \) to the identity element in \(\mathbb{C}^\times \) and that \(\exp \) respects the group law. \(\mathbb{R} \) is a group with respect to addition and so identity element in \(\mathbb{R} \) is the number 0. \(\mathbb{R}_{>0} \) is a group with respect to multiplication and the identity element in \(\mathbb{R}_{>0} \) is the number 1. But from the standard properties of the exponential function we have \(e^0 = 1 \) and \(e^{x+y} = e^x e^y \). Hence \(\exp \) is a group homomorphism. To show that \(\exp \) is surjective we need to show that for every \(y \in \mathbb{R}_{>0} \) we can find a number \(x \in \mathbb{R} \) with \(\exp(x) = y \). For this it suffices to choose \(x = \ln(y) \). To show that \(\exp \) is injective we need to show that \(\exp(x_1) = \exp(x_2) \) implies \(x_1 = x_2 \). But \(\exp \) is strictly monotonically increasing so this is clear. Thus \(\exp \) is a group isomorphism.
(b) The fact that \(\exp \) is a homomorphism follows again from the standard properties of the complex exponential function (as in (a)). To show that \(\exp \) is surjective we have to show that for every non-zero complex number \(w \in \mathbb{C}^\times \) we can find a complex number \(z \), so that \(\exp(z) = w \). Write \(w \) in polar form \(w = re^{i\theta} \). Now \(r \) is a positive real number (since \(w \neq 0 \)) and so we can form the real number \(\ln(r) \). Let \(s = |\ln(r)| \). Then \(\ln(r) = s \) if \(\ln(r) \geq 0 \) and \(\ln(r) = -s \) if \(\ln(r) < 0 \). Since \(-1 = e^{i\pi} \) we conclude that \(w = \exp(s + i\theta) \) if \(r \geq 1 \) and \(w = \exp(s + i(\theta + \pi)) \) if \(0 < r < 1 \). This shows that \(\exp \) is a surjective group homomorphism. The complex exponential \(\exp \) can not be an isomorphism since \(\exp(0) = \exp(2\pi i) = 1 \) but \(0 \neq 2\pi i \).

(c) The matrix exponential can not be a group homomorphism for \(n \geq 2 \). Indeed consider the \(2 \times 2 \) matrices

\[
A := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Now

\[
\exp(A) = \begin{pmatrix} e & 0 \\ 0 & e^{-1} \end{pmatrix}, \quad \exp(B) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]

and so

\[
\exp(A) \exp(B) = \begin{pmatrix} e & e \\ 0 & e^{-1} \end{pmatrix}.
\]

On the other hand

\[
A + B = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \quad \text{and hence} \quad (A + B)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]
Using this fact we compute

\[\exp(A + B) = \sum_{n=0}^{\infty} \frac{1}{n!} (A + B)^n \]

\[= \sum_{k=0}^{\infty} \frac{1}{(2k)!} I_2 + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (A + B) \]

\[= \frac{e + e^{-1}}{2} \cdot I_2 + \frac{e - e^{-1}}{2} \cdot (A + B) \]

\[= \begin{pmatrix} e & \frac{e-e^{-1}}{2} \\ 0 & e^{-1} \end{pmatrix}. \]

Thus \(\exp(A + B) \neq \exp(A) \exp(B) \) and so \(\exp : \mathfrak{gl}(n, \mathbb{C}) \rightarrow GL(n, \mathbb{C}) \) is not a group homomorphism for \(n = 2 \). Finally, for \(n > 2 \) just take the block matrices

\[S := \begin{pmatrix} A & 0 \\ 0 & I_{n-2} \end{pmatrix}, \quad \text{and} \quad T := \begin{pmatrix} B & 0 \\ 0 & I_{n-2} \end{pmatrix}. \]

Now

\[\exp(S) \exp(T) = \begin{pmatrix} \exp(A) & 0 \\ 0 & e I_{n-2} \end{pmatrix} \cdot \begin{pmatrix} \exp(B) & 0 \\ 0 & e I_{n-2} \end{pmatrix} \]

\[= \begin{pmatrix} \exp(A) \exp(B) & 0 \\ 0 & e^2 I_{n-2} \end{pmatrix}, \]

and

\[\exp(S + T) = \begin{pmatrix} \exp(A + B) & 0 \\ 0 & e^2 I_{n-2} \end{pmatrix}. \]

So again \(\exp(S + T) \neq \exp(S) \exp(T) \).
Solution of problem 1.3: If we identify \mathbb{H} with \mathbb{C}^2 with the standard unitary product, then E becomes a subspace of $\text{Mat}_{2 \times 2}(\mathbb{C})$ and the coordinates (x, y, z) correspond to the basis of E given by the Pauli matrices

$$
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

Thus the positive direction of the y-axis is the direction $\mathbb{R}_{>0}\sigma_2$ and so the spinor state of an electron with spin projection $1/2$ on the positive direction of the y axis is represented by a norm one eigenvector of σ_2 corresponding to the positive eigenvalue of σ_2. The eigenvalues of σ_2 are ± 1 and the $+1$ eigenspace is spanned by the vector

$$
\begin{pmatrix} -i \\ 1 \end{pmatrix} \in \mathbb{C}^2.
$$

We normalize this vector to have norm one and so

$$
\frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix} \in \mathbb{C}^2. \quad (1)
$$

represents the normalized state of an electron with spin projection $1/2$ on the positive direction of the y axis.

Similarly the positive direction of the z-axis is the direction $\mathbb{R}_{>0}\sigma_3$ and thus the spinor state of an electron with spin projection $1/2$ in this direction will be an eigenvector of σ_3 corresponding to the positive eigenvalue of σ_3. Again the eigenvalues of σ_3 are ± 1 and the $+1$ eigenspace is spanned by the norm one vector

$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{C}^2. \quad (2)
$$

Now as usual the probability that the electron in the state (1) will pass through a Stern-Gerlah machine filtering only electrons in the state (2) is given by the modulus of the scalar product of two unit norm vectors representing the two states. Thus we get

$$
\text{probability} = \left| \left\langle \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle \right| = \frac{1}{\sqrt{2}}.
$$
Solution of problem 1.4: (a) If \(x, y \in V \) are two vectors we compute

\[
\langle ff^*x, y \rangle = \langle f^*x, f^*y \rangle = \langle x, f^{**}f^*y \rangle = \langle x, ff^*y \rangle.
\]

Thus \(ff^* \) is self adjoint. The same reasoning implies that \(f^*f \) is self-adjoint as well.

(b) For any vector \(x \in V \) we have \(\langle ff^*x, x \rangle = \langle f^*x, f^*y \rangle = \|f^*x\|^2 \geq 0 \). Since \(\|f^*x\|^2 = 0 \) if and only if \(f^*(x) = 0 \), it follows that \(ff^* \) will be positive definite if and only if \(\ker(f^*) \neq 0 \). But the statement that \(\ker(f^*) \neq 0 \) is equivalent to \(f^* : V \to V \) not being an isomorphism, which in turn is equivalent to the adjoint operator \(f \) of \(f^* \) not being an isomorphism.

The prove that \(f^*f \) is positive definite if and only if \(f \) is an isomorphism is completely analogous.

Solution of problem 1.5: (a) Using the multiplication table in \(Q \) we compute

\[
\alpha \bar{\alpha} = (a1 + bi + cj + dk)(a1 - bi - cj - dk) = (a^2 + b^2 + c^2 + d^2)1 + (-ab + ba - cd + dc)i + (-ac + ca - dc + cd)j + (-ad + da - bc + cb)k
\]

\[
= (a^2 + b^2 + c^2 + d^2)1.
\]

(b) If \(\alpha = 0 \) then \(a^2 + b^2 + c^2 + d^2 \neq 0 \) and so

\[
\alpha^{-1} = \frac{1}{a^2 + b^2 + c^2 + d^2} \cdot \bar{\alpha}.
\]