(1) Let G be an abelian group and n a fixed positive integer. Show that the subset of all elements in G whose order divides n is a subgroup in G. Will this be true if G is non-abelian?

(2) Determine the automorphism group of a cyclic group of order 10.

(3) Let A and B be two groups and let $f, g : A \rightarrow B$ be two group homomorphisms. Consider the map $\varphi : A \rightarrow B$ defined by the formula $\varphi(a) = f(a) \cdot g(a)$ for all $a \in A$. True or false (give a reason or a counter-example):

(a) If A is abelian, the map φ is a group homomorphism.
(b) If B is abelian, the map φ is a group homomorphism.
(c) If $A = B = S_3$, the map φ is a group homomorphism.
(4) Let G be an abelian group of order 12, and let $\varphi : G \rightarrow G$ be the homomorphism given by $\varphi(x) = x^{11}$ for all $x \in G$. Show that φ is an isomorphism.

(5) Consider the elements

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

in the symmetric group S_4 of permutations on four letters. Show that x and y are not conjugate in S_4, i.e. show that there is no element $\sigma \in S_4$ satisfying $y = \sigma x \sigma^{-1}$.

(6) Let G be a finite group and let $x, y \in G$ be two elements of order two. Show that the subgroup of G generated by x and y is isomorphic to the dihedral group $D_{2|xy|}$.

(7) Let G be a non-commutative group. Show that $\text{Aut}(G)$ can not be cyclic.

(8) Show that every element in S_n can be written as the product of elements of order two.
(9) Let S be a finite set and let \sim be an equivalence relation on S. True or false (give a reason or a counter-example)

(a) The quotient set S/\sim is finite and $|S/\sim| \leq |S|$.
(b) All \sim-equivalence classes in S have the same number of elements.
(c) \sim is the relation of equality $=$ if and only if every \sim-equivalence class is a singleton.

(10) Let G be an abelian group, and let $H_1, \ldots, H_n < G$ be subgroups. Consider the function

$$\varphi : H_1 \times \cdots \times H_n \to G, \quad \varphi(x_1, \ldots, x_n) := x_1 x_2 \cdots x_n.$$

Show that φ is an isomorphism if and only if

(i) φ is surjective.
(ii) $H_i \cap \langle \cup_{j \neq i} H_j \rangle = \{e\}$ for all $i = 1, \ldots, n$.

(11) Let \mathcal{C} be a category and let $f : X \to Y$ and $g : Y \to Z$ be morphisms in \mathcal{C}. Suppose that g is a monomorphism in \mathcal{C} and that $g \circ f$ is an isomorphism. Show that f and g are isomorphisms.

(12) Let \mathcal{C} be a category. Let $I \in \text{Ob} \mathcal{C}$ be an initial object in \mathcal{C}, and let $F \in \text{Ob} \mathcal{C}$ be a final object in \mathcal{C}. Suppose $\text{Hom}_{\mathcal{C}}(F, I) \neq \emptyset$. Show that $I \cong F$.
(13) Let \(\text{Rel} \) be the category of relations. Prove that \(\text{Rel} \) has an initial object. Does \(\text{Rel} \) have a final object?

(14) Let \(S \) be a set and let \(C \) be the category associated with the partially ordered set \((\mathcal{P}(S), \subseteq)\). Describe the maximal subgroupoid of \(C \).