Math 602. Homework 4
(due Friday, October 24, 2008)

1. Let K be a group and let (A, α) be a K-module. and consider the canonical split extension

$$(o) \quad 0 \to A \to K \rtimes_\alpha A \to K \to 0$$

of K by (A, α). We say that two splittings s_1, s_2 of (o) are conjugate if there exists an element $a \in A$ so that for every $x \in K$ we have $a \cdot s_1(x) \cdot a^{-1} = s_2(x)$ in $K \rtimes_\alpha A$.

(a) Given a splitting s of (o) show that the map $d_s : K \to A$ given by $s(x) = (x, d_s(x))$ is a normalized 1-cocycle of K with coefficients in (A, α).

(b) Show that the set of conjugacy classes of splittings of (o) is bijective to $H^1(K, (A, \alpha))$.

2. Let K be a group and let $0 \to A' \to A \to A'' \to 0$ be a short exact sequence of A-modules (we will suppress the notation for the action from now on).

(a) For every normalized 1-cocycle $d \in Z^1(K, A'')_0$ construct a group extension $0 \to A' \to G \to K \to 0$ and a commutative diagram

$$
\begin{array}{c}
0 & \longrightarrow & A' & \longrightarrow & A & \longrightarrow & A'' & \longrightarrow & 0 \\
\downarrow & & \downarrow d & & \downarrow d & & \downarrow & \\
0 & \longrightarrow & A' & \longrightarrow & G & \longrightarrow & K & \longrightarrow & 0
\end{array}
$$

in which \tilde{d} is a normalized 1-cocycle of G with coefficients in A, where the G-module structure on A comes from the homomorphism $G \to K$.

1
(b) Show that the construction (a) gives a map

\[Z^1(K, A'') \rightarrow \text{Ext}(K, A') \]

which fits in the commutative diagram

\[
\begin{array}{ccc}
Z^1(K, A'') & \rightarrow & \text{Ext}(K, A') \\
\downarrow & & \downarrow \\
H^1(K, A'') & \rightarrow & H^2(K, A')
\end{array}
\]

(c) Let \(a : A' \rightarrow A\) and \(b : A \rightarrow A''\) be the maps appearing in the sequence 0 \(\rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0\). Show that the sequence of group homomorphisms

\[H^1(K, A') \xrightarrow{a \circ (\cdot)} H^1(K, A) \xrightarrow{b \circ (\cdot)} H^1(K, A'') \xrightarrow{\gamma} H^2(K, A') \]

is exact.

3. (a) Show that if \(A\) is the trivial \(K\)-module, then \(H^1(K, A)\) is the group of all homomorphisms from \(K\) to \(A\) and \(H^2(K, A)\) is the group of equivalence classes of central extensions of \(K\) by \(A\).

(b) Let \(K\) be a finite group. Consider the natural short exact sequence of abelian groups

\[
(*) \quad 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0,
\]

and view it as a sequence of trivial \(K\)-modules. Show that the natural map \(\gamma : H^1(K, \mathbb{Q}/\mathbb{Z}) \rightarrow H^2(K, \mathbb{Z})\) constructed in the previous problem is an isomorphism, i.e. every central extension of \(K\) by \(\mathbb{Z}\) is obtained by pulling back the extension (*) via a homomorphism \(K \rightarrow \mathbb{Q}/\mathbb{Z}\).