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ABSTRACT

Statistical Learning for Sample-Limited High-dimensional Problems with
Application to Biomedical Data

by

Tzu-Yu Liu

Chair: Alfred O. Hero III

Co-Chair: Clayton D. Scott

With advancing technology comes the need to extract information from increas-

ingly high-dimensional data, whereas the number of samples is often limited or even

acquired from imbalanced populations. This thesis develops strategies for classifi-

cation and prediction in high-dimensional but poorly sampled problems arising in

computational biology and medicine. These strategies are presented in 6 chapters.

In Chapter II Support Vector Machine (SVM) classifiers are applied to localizing

ventricular tachycardia from electrocardiographical data. In Chapters III, IV, V and

VII optimization-driven structured sparsity algorithms are developed. In Chapter

VI a class of uneven margin SVMs is proposed for learning binary classifiers with

imbalanced training populations.

The major part of this thesis is focused on group structured sparsity constrained

statistical learning for sample-limited high-dimensional problems. Variable selection

consists of reducing the dimension to a few important variables that contain most

xiv



of the information necessary for discriminating between classes or for prediction of

continuous responses. This can potentially avoid overfitting problems, improve gen-

eralizability of the predictors and provide better interpretation. Novel algorithms

based on the augmented Larangian and ADMM methods are developed for various

statistical learning problems with group structured sparsity penalty: binary SVMs

with application to 3D cell microscopy data to discover important shape information

for characterizing highly deformable cells; multi-class SVMs with application to gene

expression analysis to improve disease prediction rate and control irrelevant patient

variations; PLS regression with application to chemometrics, medicine, and agricul-

ture applications. These applications demonstrate the benefit of sparsity constrained

optimization approaches to high dimensional problems with limited data.
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CHAPTER I

Introduction

1.1 Motivation

With advancing technology comes the need to extract information from increas-

ingly high dimensional data. Some examples of technologies that produce high di-

mensional data are microarrays in genomics (dimensions in the tens of thousands

of gene expression probes), high-throughput video sequences (dimensions in the mil-

lions of pixel intensities per second), electrocardiology (dimensions in the thousands

of samples per ECG electrode), and chemometrics (dimensions in the thousands of

spectrum analyzer bands per compound), etc. These technologies produce data that

have high intrinsic statistical variability, e.g., due to technical noise or biological vari-

ation in the sample. To account for statistical variability it is necessary to acquire

multiple samples. This gives rise to the problem of information extraction from data

of high dimension from relatively few samples. This thesis addresses several specific

applications involving extracting information from data of high dimension with small

sample size.

We motivate our domain of study by the electrocardiology problem of detecting

and localizing ventricular tachycardia (VT), an arrhythmia originates in one of the

ventricles of the heart, from ECG and electrograms (EGM) data. These data have

the aforementioned properties of:

1



1. High dimension: the ECG and EGM data consist of temporal traces of heart

activity, i.e., heart beat waveforms, that are digitized into a data matrix containing

thousands of time samples.

2. Small sample size: The number of patients that are available for training the

classifier is only on the order of tens.

3. High variability: Patients within a given heart disease category have ECG and

EGM traces that exhibit a high degree of variability in the shape (QRS-complex) of

their digitized waveforms.

These properties bring challenges to applying machine learning methods to dis-

ease classification, VT detection, and VT source localization. Training classifiers with

high dimensional data and few samples can result in overfitted models, reducing the

predictability of the classifiers. The high variability of the signals and the limited

samples challenge the accuracy of information extraction, and make the interpreta-

tion of the data difficult. The accuracy of the model learned from clinical data suffers

from small data size and imbalanced proportions among the different disease classes.

This motivates the issues treated in this thesis: statistical learning in high dimen-

sional and small sample size data. We address these issues by developing statistical

learning methods with sparse feature selection. Regularized Support Vector Machines

(SVM) in Chapter IV and Chapter V enable feature selection simultaneously with

classification. The formulation of Sparse Partial Least Squares regression in Chapter

VII provides a regression tool, combining dimensionality reduction, prediction, and

variable selection. Uneven margin SVM of Chapter VI addresses the issue of learning

from imbalanced populations.
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1.2 Background and Contributions

1.2.1 Background

We motivate the thesis by the electrocardiology problem of detecting and local-

izing ventricular tachycardia (VT) from ECG and EGM data. VT is a potentially

life-threatening arrhythmia because it may lead to ventricular fibrillation and sud-

den death. A common current therapy is to perform a catheter ablation procedure,

which requires finding the location of the VT on the myocardium (cardiac mapping

procedure), and eliminating the VT source by high frequency radio waves (catheter

ablation procedure). The mapping procedure consists of two stages. First, the electro-

cardiologist induces VTs in the patient, and records the signals as templates. At the

next stage, a catheter at the left ventricle is used to stimulate the wall and the signals

are recorded, forming a record containing the so-called pace-maps. The objective is

to look for pace-maps that match the morphology of the recorded templates of VT

and eliminate the loci of these VT sources by ablation. The accuracy of VT detec-

tion and localization algorithms will depend on the spatial resolution and sensitivity

properties of the sensing instrument. Two instruments are commonly used in electro-

cardiology, 12 lead electrocardiograms (ECG), and single lead electrograms (EGM)

from implantable cardiac defibrillators (ICDs). EGM’s ability to differentiate VTs

and to target VT during mapping and ablation have not been thoroughly explored.

Furthermore the spatial resolution of pace-mapping within the infarct zone (a local-

ized area of scar tissue due to loss of adequate blood supply ) in patients with prior

infarction has not been adequately assessed. Developing algorithms that use Elec-

trograms as a surrogate for ECG and automated classification or prediction of the

origin of VT based on ECG can potentially result in a reduction of the time duration

of the pace-mapping procedure, which usually takes more than 6 hours. In Chapter

2 we introduce machine learning algorithms for classification and spatial localization
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designed for pace-mapping. In particular, we developed quantitative measures of the

achievable spatial resolution of ECGs and EGMs, examined the potential of using

EGMs when ECGs of the VT template are not available, and built classifiers based

on ECGs to predict the locations of VT origination sites.

1.2.2 Learning from High-dimensional Features

One of the principal challenges of high dimensional data is that the number of

samples is usually much smaller than the dimension. Let rp be the dimension of the

feature variables collected, and let n be the number of samples. It is well known that

the estimate of the covariance matrix of the high dimensional variables is problematic

since when n < rp the empirical estimate of the covariance matrix becomes singular.

A similar problem occurs in classification and regression problems. In this thesis we

take small sample size and reduce the dimension of the feature space using variable

selection techniques. Variable selection consists of reducing the dimension to a few

important variables that contain most of the information necessary for discriminating

between classes or for prediction of unobserved events. This can potentially avoid

overfitting problems, improve generalizability of the predictors, and provide better

interpretation through a more parsimonious model [4].

Suppose we have a dataset with n samples,

{xi,yi, si}ni=1

in which xi ∈ Rrp are the independent variables, yi ∈ {1, 2, ..., K} are the depen-

dent variables for categorical responses or yi ∈ Rq for continuous responses, and

si ∈ {1, 2, ...,m} represents the additional information about the generating sources.

All r, p, q,m are positive integers. It is sometimes useful to write the variables in

matrix forms, X ∈ Rn×rp and Y ∈ Rn×q. The data format occurs naturally in
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experiments conducted under several conditions. For example, in serially sampled

experiments, there could be multiple measurements collected over time, contributing

one p dimensional measurement at each time point, then xi becomes a multi-block

data with r blocks. The data may have been collected from m different individuals,

labeled as si.

The thesis begins with supervised classification, binary classification with group

structured feature selection when r = 1, and extends to multi-block multi-class data

by adopting a general framework [3]. In multi-block multi-class classification, the

task is to correctly predict the label by using serially or spatially diversified samples.

As the data dimension increases, variable selection becomes increasingly important

in these problems.

This is especially the case for the serially sampled reference-based classification

problem, which can be viewed as a special structured case of the multi-block multi-

class classification problem [3] [5], as variable dimensions increase linearly in the

number of references. For example, a fixed sample for each subject under normal

conditions, i.e., before the challenge tasks, can be viewed as a fixed reference. The

references and the samples after the challenge tasks form a dataset with r = 2 blocks.

By using such a fixed reference, irrelevant patient variations can be controlled and

enhance our ability to evaluate positive or negative response to drug treatment, or

classification of diseases based on gene microarray responses from multiple time points

or multiple tissues. Hence it is important to understand which variables are strongly

relevant to the classification task, and how they evolve over temporally or spatially

different samples.

We treat variable selection for the general multiclass classification problem for

which binary classification variable selection has been commonly implemented by

using forward/backward selection and parameter estimation with shrinkage. For the

high-dimensional multi-block multi-class problems of interest to us, in this thesis we
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show that parameter estimation with shrinkage can be cast as a problem of structured

variable selection, where the structure is specified by the classes and blocks defining

the sampling patterns. The problem can be formulated mathematically as

min
F
V (F,X, Y ) + λR(F ) (1.1)

in which V is a loss function for classification, R is a sparsity regularization function

that induces shrinkage, and λ is the regularization parameter. A convex optimization

method is developed to solve for the optimal classifier function F and select the rele-

vant variables simultaneously. This optimization is implemented by variable splitting

and augmented Lagrangian methods.

Another dimension reduction technique that has obtained much attention in re-

cent years is the class of constrained eigen-decomposition methods, such as principle

component analysis (PCA) [6] and partial least squares regression (PLS) [7]. PLS can

be viewed as an extension of PCA since it takes into account the response variables,

and is a supervised learning method. PLS combines dimensionality reduction and

prediction using a latent variable model. We discuss the PLS model and formulate

the sparse PLS in Chapter VII.

Standard PLS performs a sequence of eigen-decompositions to specify the PLS

component directions and the latent components of the PLS model. Suppose that

the data with n samples consists of predictors X ∈ Rn×p and responses Y ∈ Rn×q.

The general underlying model is X = TP ′ + E and Y = TQ′ + F , where T is the

latent component matrix, P and Q are the loading matrices, E and F are the residual

terms.

As variable dimension increases, variable selection also becomes essential to avoid

over-fitting and to provide more accurate PLS predictors. We propose a structured

sparsity penalty in which global variable selection is performed such that any variable

selected is shared among all PLS components. Analogous to the variable selection
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in multi-block multi-class classification, we formulate PLS with structured sparsity

as a variational optimization problem, with objective function V in Equation 1.1

equal to the classical PLS criterion with an added mixed norm sparsity constraint on

the weight matrix. We propose a novel augmented Lagrangian method to solve the

optimization problem. We show that soft thresholding for sparsity occurs naturally

as part of the iterative solution.

We summarize the specific formulation of the loss function and the sparsity reg-

ularization functions of (1.1) in Table 1.1. Experiments show that both the general

multi-block multi-class classification with variable selection and the modified PLS

attains better performance with fewer predictor variables and fewer components as

compared to previously proposed PLS methods [7] [8] [9].

1.2.3 Learning from Imbalanced Data

Most statistical learning methods are usually designed for data that are well-

balanced. However, there are many of real world problems that do not have the

same number of training samples in each class. This creates another common small

sample size problem, in which the number of samples in a particular class is much

smaller than any other. This problem is known as the imbalanced learning problem

[10, 11, 12, 13, 14, 15, 16, 17, 18].

There are two main strategies that have been proposed to solve the imbalanced

classification problem in the literature. One artificially balances the training data,

also known as the external approaches; while the other, adopted here, tries to de-

velop algorithms that can handle imbalanced data in an optimal manner, also known

as internal approaches. We compare recent approaches that deal with imbalanced

datasets in the context of weighted risks, which is a performance measure related to

classification calibration [19]. Let η(x) = P (Y = 1|X = x), and α ∈ (0, 1) be the

uneven cost parameter for false positive and false negative. The conditional L-risk
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Method Formulation

X ∈ Rp, yi ∈ {−1, 1}
F = {f}, f(x) = w′x + b

Binary SVM

Chapter IV V (F,X, Y ) = 1
n

n∑
i=1

[1− yif(xi)]+

R(F ) =
G∑
g=1

||wIg ||2

X ∈ Rrp , yi ∈ {1, 2, ..., K}
F = {f1, f2, ..., fK}, fk(x) = w′kx + bk

Multi-class

SVM W =

 |
w1

|

|
w2

|
· · ·

|
wK

|

 =


− w′(1) −
− w′(2) −

...
− w′(p) −


Chapter V V (F,xi) = 1

n

n∑
i=1

[
max
k

(1− δyi,k + fk(xi)− fyi(xi))
]

+

R(F ) =
∑p

j=1

∥∥w̃(j)

∥∥
2

with w̃(j) =


w(j)

w(j+p)
...

wj+(r−1)p


X ∈ Rp, yi ∈ Rq

W =

 |
w1

|

|
w2

|
· · ·

|
wK

|

 =


− w′(1) −
− w′(2) −

...
− w′(p) −


PLS

Chapter VII V (W,X, Y ) = − 1
n2

K∑
k=1

w′kX
′Y Y ′Xwk

s.t. w′kwk = 1 ∀ k and w′kX
′Xwi = 0 ∀ i 6= k

R(W ) =
p∑
j=1

||w(j)||2

Table 1.1: Definitions of V and R in the thesis.

is defined as CL(η, t) = ηL1(t) + (1 − η)L−1(t). A loss function L is α-classification

calibrated if, for all x such that η(x) 6= α, the value of the prediction function f(x)

minimizing the conditional L-risk will have the same sign as the optimal predictor

η(x) − α. The experimental results support what we expect from the calibration
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theory: calibrated losses outperform the non-calibrated losses.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter II presents research on ECGs and

EGMs pace mapping analysis. In chapter III, we discuss a general framework for

statistical learning with group structured variable section and introduce the general

optimization algorithm for solving these problems. Chapter IV and V focus on binary

and multi-class classifications with group structured variable selection respectively.

We show that the performance becomes better with our proposed method in high

dimensional data. Chapter VI addresses the problem of learning optimal classifiers

with imbalanced training data, which is motivated by the imbalance applications in

chapter II and V. In chapter VII, we present our approach to sparse partial least

squares regression with mixed norm penalties. We again impose sparsity constraints

as in chapter IV and V, but to a different statistical learning problem. Finally,

conclusions and some possible extensions for future work are discussed in Chapter

VIII.

1.4 Publications
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follows.
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rillator electrograms for recognition of clinical ventricular tachycardias and for pace

mapping of post-infarction ventricular tachycardia”. J Am Coll Cardiol, 56(12), 2010.

[2] Miki Yokokawa, Tzu-Yu Liu, Kentaro Yoshida, Clayton Scott, Alfred O. Hero, Eric
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Good, Fred Morady, and Frank Bogun. ”Automated analysis of the 12-lead electro-
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CHAPTER II

SVM classifiers for Electrocardiograph Application

2.1 Introduction

Ventricular tachycardia (VT) is a tachycardia, or fast heart rhythm, that orig-

inates in one of the ventricles of the heart. This is a potentially life-threatening

arrhythmia because it may lead to ventricular fibrillation and sudden death.

It is usually possible to terminate a VT episode with a direct current shock across

the heart. The shock may be delivered to the outside of the chest using an external

defibrillator, or internally to the heart by an implantable cardioverter-defibrillator

(ICD) if one has previously been inserted. An ICD may also be set to attempt to

overdrive the pace of the ventricle. Pacing the ventricle at a rate faster than the

underlying tachycardia can sometimes be effective in terminating the rhythm. If this

fails after a short trial, the ICD will usually stop pacing, charge up and deliver a

defibrillation grade shock.

However, a direct current shock does not eliminate a VT from recurrence. And

in [20], it is concluded that among patients with heart failure in whom an ICD is

implanted for primary prevention, those who receive shocks for any arrhythmia have

a substantially higher risk of death than similar patients who do not receive such

shocks.

Catheter ablation has revolutionized the management of patients with tachyarrhyth-

11



mias [21]. Having evolved from arrhythmia surgery, catheter ablation was initially

performed using high voltage direct current (DC); however, since the late 1980s, ra-

diofrequency current has supplanted DC as the energy source of choice and has made

catheter ablation a first-line therapy for many tachycardias [22].

Therefore, finding the location of the VT is paramount in radiofrequency ablation,

which could depend on the spatial resolution of the 12 lead electrocardiograms (ECG),

and electrograms (EGM) from implantable cardiac defibrillators (ICDs). EGM’s abil-

ity to differentiate VTs and its use to target VT during mapping and ablation proce-

dures have not been described. Furthermore the spatial resolution of pace-mapping

within the infarct zone (which results in an macroscopic area of tissue due to loss

of adequate blood supply) in patients with prior infarction has not been adequately

assessed. We have shown in this study that ICD EGMs can be used to differentiate

clinical VTs from other VTs in patients undergoing VT ablation procedures. The

spatial resolution of pace-mapping using ICD EGMs is variable but can be used for

identification of a VT exit site.

2.2 Background

2.2.1 Electrical Activity of the Heart

The electrical behavior of a single cardiac muscle cell can be investigated by in-

serting microelectrodes into the interior of a cell from various regions of the heart

[23].The various phases of the cardiac action potential are associated with changes in

the permeability of the cell membrane, mainly to Na, K, and Ca ions. These changes

in permeability produce alterations in the rate of passage of these ions across the

membrane. And any process that abruptly changes the resting membrane potential

to a critical value (threshold) will result in a propagated action potential.

Electrocardiograms (ECG) are usually recorded from indirect leads, i.e., located
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on the skin. Electric activity going through the heart, can be measured by external

(skin) electrodes. The ECG registers these activities from these electrodes which have

been attached on different places on the body. In total, twelve leads are calculated

using ten electrodes. They consist of 6 chest leads (V1,V2,V3,V4,V5 and V6) and 6

extremity leads (I, II, III, aVL, aVR, and aVF).

2.2.2 Ventricular Tachycardia (VT)

The majority of VTs are caused by re-entry involving a region of ventricular

scar[24]. Dense fibrotic scar creates areas of anatomic conduction block. Fibrosis be-

tween surviving myocyte bundles decreases cell to cell coupling, and distorts the path

of propagation causing slow conduction, which promotes re-entry. These re-entry

circuits (Fig 2.1) often contain a narrow isthmus of abnormal conduction. Depolari-

sation of the small mass of tissue in the isthmus is not detectable in the body surface

ECG. The QRS complex is caused by propagation of the wavefront from the exit of

the circuit to the surrounding myocardium. After leaving the exit of the isthmus, the

circulating re-entry wavefront may propagate through a broad path along the border

of the scar (loop), back to the entrance of the isthmus.

Figure 2.1: the re-entry circuit

A variety of different circuit configurations are possible. Ablation lesions produced

with standard RF ablation catheters are usually less than 8 mm in diameter, relatively
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small in relation to the entire re-entry circuit, and can be smaller than the width of

the re-entry path at different points in the circuit. Successful ablation of a large

circuit is achieved either by targeting an isthmus where the circuit can be interrupted

with one or a small number of RF lesions, or by creating a line of RF lesions through

a region containing the re-entry circuit.

The situation is further complicated by the frequent presence of multiple potential

re-entry circuits, giving rise to multiple different VTs in a single patient. Ablation

in one area may abolish more than one VT, or leave VT circuits in other locations

intact. VTs that have been documented to occur spontaneously are referred to as

”clinical VTs”. Those that are induced in the electrophysiology lab, but not previ-

ously observed, are referred to as ”non-clinical VTs”.

2.2.3 Pace-map Procedure and Radiofrequency Ablation

An electrophysiology (EP) study of the heart is a nonsurgical analysis of the

electrical conduction system (normal or abnormal) of the heart. The test employs

cardiac catheters and sophisticated computers to generate electrocardiogram (ECG)

tracings and electrical measurements with exquisite precision from within the heart

chambers. The EP study can be performed solely for diagnostic purposes. It also

is performed to find the exact location of electrical signals (cardiac mapping) with a

therapeutic procedure called catheter ablation.

Catheter/Radiofrequency ablation procedure involves the use of a specially de-

signed catheter that is threaded through the leg into the heart. While in the heart,

the catheter is used to locate the arrhythmia source, which is then eliminated by high

frequency radio waves, i.e., targeting at an isthmus where the re-entry circuit can be

interrupted.

This study was approved by the Institutional Review Board at the University

of Michigan. After informed consent was obtained, a multipolar electrode catheter
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was inserted into a femoral vein and was positioned in the right ventricular apex. A

7 French multipolar catheter was placed at the His bundle position. Programmed

ventricular stimulation was performed from 2 right ventricular sites using up to 4

extrastimuli. After ablations, the same stimulation protocol was repeated from 2

ventricular sites. In all patients, either a single or multiple VTs were recorded on

either a 12- lead ECG or on a 7-lead telemetry recording before the ablation procedure.

The spontaneous VTs were defined as the clinical VTs. The morphology of the clinical

VTs was compared to the morphology of the induced VTs.

An electroanatomic mapping system (CARTO, Biosense Webster, Inc, Diamond

Bar, California) was used in all patients, with an 8-Fr mapping/ablation catheter that

had a 3.5-mm irrigated-tip electrode and a 2-mm ring electrode separated by 1 mm

(Thermocool, Biosense Webster, Diamond Bar, CA). Intracardiac electrograms were

filtered at 50-500 Hz. The intracardiac electrograms and leads V1, I, II and III were

displayed on an oscilloscope and recorded at a speed of 100 mm/sec. The recordings

were stored on optical disc (EP Med, Inc). Systemic heparinization was maintained

throughout the procedure.

Left ventricular access was obtained using a retrograde aortic approach. A left

ventricular endocardial voltage map was constructed during sinus rhythm. Pace-

mapping was performed at sites with a voltage < 1.5 mV. Low voltage was defined as

a bipolar voltage of < 1.5 mV. Dense scar was defined as < 0.5 mV. The border zone

was defined as 0.5-1.5 mV. Bipolar pace-mapping was performed with an amplitude

of 10 mA at a pulse width of 2 ms. If no capture occurred, the pacing output was

increased progressively up to 20 mA.

The power of radiofrequency energy was titrated to achieve an impedance drop

of 10 ohms. The maximal temperature was 45 degree celsius. Radiofrequency energy

was delivered at isthmus sites or at VT exit sites.
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2.2.4 Implantable Cardioverter Defibrillator (ICD)

ICDs are small devices, about the size of a pager, that are placed below the

collarbone. Via wires, or leads, these devices continuously monitor the heart’s rhythm.

If the heart beats too quickly, the ventricles will not have enough time to fill with

blood and will not effectively pump blood to the rest of the body. Left unchecked,

the rapid heartbeat could cause death. To intervene, the ICD issues a lifesaving jolt

of electricity to restore the heart’s normal rhythm and prevent sudden cardiac death.

ICDs also can act as pacemakers when a heart beat that is too slow (bradycardia) is

detected.

Most ICDs keep a record of the heart’s activity when an abnormal heart rhythm

occurs. With this information, the electrophysiologist, a specialist in arrhythmias, can

study the heart’s activity and ask about other symptoms that may have occurred.

Sometimes the ICD can be programmed to pace the heart to restore its natural rhythm

and avoid the need for a shock from the ICD. Pacing signals from the ICD are not

felt by the patient; shock signals are, and have been described as a kick in the chest.

2.2.5 Recorded Signals

In the pace-mapping procedure, a patient could have several VTs induced. We

stored the 12 lead ECG and the EGM from the ICD for each VT, named as the

templates. Depending on the manufacturers, most ICD stored two waveforms, named

the far-field and the near-field, others only have one ICD signal. Therefore each set

of template, corresponds to one VT, and has 13-14 waveforms, as shown in figure 2.2.

Then the catheter stimulated the wall of the left ventricle. The ECG and EGM

generated, named as the pace-maps (test signals), are compared with those of the

template. The figure above also shows a pace-map example.
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Figure 2.2: ECGs and EGMs for a VT(left) and a pace-map(right)

2.3 Value of Defibrillator Electrograms: Spatial Resolution

and Differentiation of Ventricular Tachycardias

If the catheter is at the site of origin of the VT, then theoretically the ECG and

EGM should have the same morphology as those of the targeted VT. This explains

how pace-mapping works for identifying the site of origin. In clinical practice, pace-

mapping is analyzed by visual inspection. A standard way of judging is that a good

pace-map should have more than 10 leads among the 12 leads ECG that match with

those of the template, then radiofrequency ablation is applied to this pacing site.

We would like to know how close do the 12 leads ECG bring us to the origin of

the targeted VT when we observe a match between the targeted VT and the pace-

map, defined as the spatial resolution of ECG. Similarly, we would like to know the

spatial resolution of EGM. Though the 12 lead ECG is the standard judgment in

the pace-mapping procedure, understanding the value of EGM is important. For one

thing, the signals recorded in the ICDs might be the only prior information regarding

a new patient. For another, this is the first step to evaluate the potential of using

17



ECG to differentiate VTs and may improve the algorithm in the ICD to reduce the

false discharges/shocks.

However, the assessment of the spatial resolution is difficult unless a reproducible,

quantitative analysis is performed. The purpose of this study is two-fold: (1) Provide

a quantitative measure of the spatial resolution of pace-mapping using the 12 lead

ECG and the EGM from the ICD. Compare these two measurements. (2) Provide a

quantitative measure of the differentiability among different VTs using the EGMs.

2.3.1 Signal Alignment

Figure 2.3: signals have different vector length

In Fig 2.3, we have a set of data from a patient, who is diagnosed to have 4

VTs, called VT1, VT2, VT3, VT4. The pace-map chosen is one of the 50 pace-map

(testing) sites. Vertically, we see 13 waveforms, in which the first 12 of them are the

12 lead ECG, and the last one is the EGM from the ICD. Horizontally, the number

of samples in one period is roughly around 500, with sampling frequency 2 kHz.
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In electrophysiology’s point of view, the pace-map chosen corresponds to VT1. So

we would like to develop a testing method which gives positive results when testing

the pace-map with VT1, and negative results with other VT’s. However, the vector

lengths of the pace-map and VTs are different. To make the vectors comparable, it

requires the alignment of signals. Let l1, l2 be the lengths of the two signals v1, v2,

being compared, in which l1 > l2. We set a window length of l2 on v1, and move the

window to get the truncated v1′ such that the correlation coefficient between v1′ and

v2 is maximized, or the root-mean-square difference between them is minimized. Fig.

2.4 shows the alignment results for a matching pace-map site and a non-matching

pace-map site is shown in Fig. 2.5.

Figure 2.4: the alignment between targeted VT and a matching pace-map
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Figure 2.5: the alignment between targeted VT and a non-matching pace-map

2.3.2 Data Analysis

The most widely used technique in pace-mapping procedure is the correlation

coefficient and root-mean-square statistics. They are less powerful than parametric

methods if the assumptions underlying the latter are met, but are less likely to give

distorted results when the assumptions fail.

corrcoef(Xi,Yi) =

(
Xi −Xi

)′ (
Yi −Yi

)√(
Xi −Xi

)′ (
Xi −Xi

)√(
Yi −Yi

)′ (
Yi −Yi

)

RMSd(Xi,Yi) =

√
1

l
(Xi −Yi)

′ (Xi −Yi)

The idea came from [25]. Since the matching between VT and pace-map requires

the same morphology and the same magnitude, we try to explain the former by the

correlation coefficient, and the latter with root-mean-square difference. The analysis

was carried out for each of the 12 leads, Xi, and Yi, where i = 1, 2, ..., 12. The

correlation coefficients, the correlation coefficients, and RMSd, were averaged over

the 12 leads, yielding 2 values that represented the degree of similarity between the

test and template siganls based on the 12 lead ECG information. The same analysis

was carried out for the ICD signals to represent the similarity based on EGM.
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Another statistic analysis tool applied in this project is the receiver operating

characteristic (ROC), a graphical plot of the sensitivity (β) versus 1-specificity (α)

for a binary classifier system as its discrimination threshold is varied. Define a test

function

Φ(x) =

 1, say H1

0, say H0

The false alarm probability and detection probability are functions of θ.

Eθ[Φ] =

∫
χ

Φ(x)f(x; θ)dx =

 PF (θ), θ ∈ Θ0

PD(θ), θ ∈ Θ1

A test function is said to be of level α ∈ [0, 1] if max
θ∈Θ0

PF (θ) ≤ α and the power

function is defined as β(θ) = PD(θ), θ ∈ Θ1. For the test of simple hypotheses

θ ∈ {θ0, θ1},

H0 : X ∼ f(x; θ0)

H1 : X ∼ f(x; θ1)

the Neyman-Pearson Strategy is to find the most powerful test Φ∗ of level α: Eθ1[Φ∗] ≥

Eθ1[Φ] for any other test satisfying Eθ0[Φ] ≤ α. By Neyman Pearson Lemma, the MP

test is a randomized likelihood ratio test of the following form

Φ∗(x) =


1, f(x; θ1) > ηf(x; θ0)

q, f(x; θ1) = ηf(x; θ0)

0, f(x; θ1) < ηf(x; θ0)

where η and θ are chosen to satisfy Eθ0[Φ∗] = α. The threshold test have PF and

PD indexed by a parameter η, then the receiver operating characteristic is simply the

plot of the parametric curve {PF (η, q), PD(η, q)}η,q, a plot of β = PD versus α = PF .
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2.3.3 Spatial Resolution

Two independent observers compared the 12-lead ECG pace-maps and determined

whether at least 10/12 leads matched with the targeted VT. Discrepancies were re-

solved by consensus. Labeling a pace-map with match of ≥ 10/12 leads as positive

and negative otherwise, this generated a binary classification. Consider a true positive

(the outcome from a prediction is positive and the actual value is also positive), by

visual inspection, the pace-maps and the targeted VT should have the same morphol-

ogy; by quantitative analysis, the corrcoef between them is expected to be high, and

the RMSd is expected to be low. Given the corrcoef and RMSd statistics, we varied

the discrimination thresholds, and determined a receiver operating characteristic for

each kind of statistic per patient per VT. The threshold that maximized the sum of

sensitivity(β) and specificity(1−α) was chosen as the cut-off value for classifying the

pace-maps.

To determine the spatial resolution of the pace-maps, the distance of each pace-

mapping point from the exit site was measured on the electroanatomic map and

correlated with the cut-off values of the compared signals (template signal vs test

signal). An exit site was defined as a site where the pace-map matched the targeted

VT and where the stimulus-QRS interval was less than 30% of the VT cycle length

when pacing was performed during sinus rhythm at the VT cycle length. The area

encompassing pacing sites with a corrcoef beyond the cut-off corrcoef value repre-

sented the spatial resolution for mapping an exit site (Fig 2.6). The same procedure

is performed on the electroanatomic map for the RMSd statistic.

A total of 124 VTs were induced by programmed stimulation. In 13 of 15 patients

in whom the clinical VTs were documented on 12-lead ECGs, VTs with matching

configurations were inducible by programmed stimulation. In 2 of 15 patients, the

documented VTs could not be induced; however, there were frequent premature ven-

tricular contractions during the procedure that matched the clinical VT on the basis
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Figure 2.6: voltage map

of 12-lead ECGs. Pace-mapping was performed at 1,296 sites (a mean of 62 sites

per patient, resulting in a sampling density of 0.75 points/cm2 within low-voltage

tissue) within low-voltage areas, and 62 distinct exit sites were identified. Matching

pace maps were identified for an additional 15 VTs, but these were not considered

exit sites because they had long stimulus-QRS intervals when pacing was performed

during sinus rhythm. VT ablation sites were identified by entrainment mapping in 9

VTs and by pace mapping for 68 VTs. The mean procedure time was 383± 97 min.

The total amount of radiofrequency energy delivered was 72±41 min. After ablation,

10 VTs (8%) remained inducible. None of the clinical VTs remained inducible. Four-

teen patients (67%) had no inducible VTs after ablation. Outcomes were no different

if the exit site was identified on the basis of 10, 11, or 12 matching leads in the pace

maps. VT exit sites and scar. The VT exit sites were located within low-voltage

areas and had a mean bipolar voltage of 0.44± 0.43 mV. They were located a mean
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of 16±10 mm (range 4-46 mm) from sites with normal voltage (> 1.5 mV). The total

mean low-voltage area was 82± 35 cm2 (bipolar voltage < 1.5 mV) and 68± 31 cm2

(bipolar voltage < 1.0 mV).

By the 12-lead ECG, the spatial resolution of pace mapping for identifying the

exit site of a VT was 3.8±4.5 cm2 (range 0 to 17.5 cm2) for the correlation coefficient

and 3.6±4.5 cm2 (range 0 to 18.3 cm2) for the RMSd. By the farfield ICD EGMs, the

spatial resolution of pace mapping for identifying the exit site of a VT was 10.1±10.0

cm2 (range 0 to 36.5 cm2) for the correlation coefficient and 10.2 ± 10.5 cm2 (range

0 to 35 cm2) for the RMSd.

2.3.4 Differentiation of the Clinical VT

When ECG documentation of a clinical VT is not available in a patient with an

ICD, the ICD electrograms can be used to discriminate the clinical VT from other

VTs that are induced in post-infarction patients. Furthermore ICD electrograms may

be helpful for pace-mapping when a clinical VT is not inducible in determining the

site of origin of targeted VTs during a mapping and ablation procedure. The latter

may have relevance in patients in whom VTs are not inducible.

The template signals of the clinical VTs were compared to a total of 64 test signals

of VTs that were induced during programmed stimulation. The ICD electrograms

were almost as accurate as the 12-lead ECG’s in differentiating the clinical VT from

non-clinical VTs. All clinical VTs were accurately identified based on the 12-lead

ECG from the clinical VT, and 98% of the ICD electrograms had a corrcoef that was

below the cut-off value determined by the ROC curve of the clinical VT.

Identification of clinically-relevant VTs in post-infarction patients undergoing VT

ablation is difficult unless a multi-lead ECG of the VT is available. Identification

of the clinical VT is paramount as this might be the only VT requiring therapy.

Ablation of only non-clinical VTs may result in recurrence of VT post-ablation. Fur-
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thermore a particular VT may respond to anti-tachycardia pacing, and identification

of a particular VT based on ICD EGMs might help to deliver a selected therapy that

is effective for a particular VT, and thereby avoid unnecessary ICD discharges. This

study demonstrates that the ICD electrograms are capable of identifying a particular

VT as clinical or non-clinical.

2.3.5 Discussion

The ability of EGMs to differentiate VT and their use to target VT during map-

ping and ablation procedures have not been described. The spatial resolution of

pace-mapping within the infarct zone in patients with prior infarction has not been

adequately assessed. In 21 consecutive patients referred for catheter ablation of post-

infarction VT, VTs were induced and ICD EGMs were recorded at the same time.

The exit site of a particular arrhythmia was then identified by pace-mapping and

the spatial resolution and accuracy of pace-mapping was determined for the 12 lead

electrocardiogram (ECG) and the ICD EGMs. This was accomplished by comparing

template signals to test signals using a customized Matlab program. Cut-off values

were established using ROC curves to separate matching from non-matching pace-

maps. The 12 lead ECG morphology of the clinical VTs was compared to 62 distinct

VTs that were inducible to assess the discriminatory value of ICD EGMs to differ-

entiate the clinical VT from other induced VTs. We found that ICD EGMs can be

used to differentiate clinical VTs from other VTs in patients undergoing VT ablation

procedures. The spatial resolution of pace-mapping using ICD EGMs is variable but

can be used to confirm the presence of an exit site.
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2.4 Automated Analysis of the 12-lead Electrocardiogram

to Identify the Exit Site of Postinfarction Ventricular

Tachycardia

The value of the 12-lead electrocardiogram (ECG) to identify the exit site of

postinfarction ventricular tachycardia (VT) has been questioned. The purpose of

this study was to assess the accuracy of a computerized algorithm for identifying a

VT exit site on the basis of the 12-lead ECG. In 34 postinfarction patients, pace map-

ping was performed from within scar tissue. A computerized algorithm that used a

supervised learning method (support vector machine) received the digitized pace-map

morphologies combined with the pacing sites as training data. No other information

(i.e., infarct localization, bundle branch block morphology, axis, or R-wave pattern)

was used in the algorithm. The training data were validated in 58 VTs in 33 patients.

Only the pace-map and/or VT morphologies were used in this algorithm. The sizes

of 10 different anatomic sections within the heart were determined by using the pace

maps as the determining factor. Automated identification of a VT exit site based on

the 12-lead ECG of postinfarction VT is possible with an accuracy of about 70% for

identifying a region of interest with a size of approximately 15 cm2. Identification of

an area of interest up-front will help to facilitate mapping and ablation of complex

postinfarction VTs, especially in patients with large scars.

2.4.1 Classification of the 12-lead ECG

Digitized 12-lead ECGs of pace-maps generated within low-voltage tissue in the

34 patients were analyzed. The pacing sites were assigned a particular anatomic

location within the heart based on a previously described schema (AJ, Fig. 2.7)[26].

The schema was adapted to this study by using the following guidelines: The distance

between the apex and the base was divided into 3 equal segments (basal, mid, and
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Figure 2.7:
Cardiac sections of AJ serving as the regions to which the VT exit sites
were assigned

distal). Areas A, B, C, and J were the distal segments; areas I, E, and D were the

mid segments; and areas E, F, G, and H were the basal segments. Localization was

performed by 2 independent observers. Discrepancies were resolved by consensus.

We wanted to assess whether a computerized algorithm is able to distinguish the

pacing site based on QRS morphology of the 12-lead ECG. To achieve this, we used

a supervised learning method, the Support Vector Machine (SVM).

SVM is a machine learning technique. In binary classification problems, the prin-

ciple of SVM is to find a hyperplane to separate the signals from the 2 regions, such

that the separation between the 2 classes is maximized. In this multi-class problem,

we followed a one-against-one approach to break the multi-class classification into

several binary problems. We trained the algorithm for each pair of 2 different regions

where the 12-lead ECG signals originate from and analyzed how often a particular

region was chosen by the algorithm to determine which region (AJ) the ECG signal

would be assigned to. Based on the majority vote policy, one can also rank all the

possibilities, and use the rank (given the sorted prediction list, from the most probable
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Figure 2.8: Confusion matrix comparing accuracy of each region.

to the least, the position of the correct prediction) as the performance measure.

The algorithm to assign a particular pace-map to a particular region (AJ) was

tested with leave one out cross-validation. The results were displayed in a confusion

matrix indicating the percentage of correctly classified data (red rings indicate per-

centages of the correctly identified data in Fig. 2.8). The training data containing

pace maps only were then validated by using 58 VTs from 33 patients where exit sites

were identified by pace-mapping. The 12-lead ECGs of 58 VTs from 33 postinfarc-

tion patients in whom the exit sites were determined by pace mapping were analyzed

prospectively. An exit site was defined as a site where the pace map matched the

targeted VT and where the stimulusQRS interval was ≤ 30% of the VT cycle length

when pacing was performed during sinus rhythm. The VTs of these 33 patients served

as testing data, and the pace-maps from the initial 34 patients served as the training

data. Data were analyzed for the validation of accuracy of the computerized algo-

rithm. The accuracy was 71% for assigning the testing data into the correct region

(AJ). The overall accuracy increased to 88% for identification of a matching region

if the 2 top-ranked regions were included. The overall rank to correctly identify a
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particular region was an average of 1.7.

2.4.2 Determination of Spatial Resolution of the 12-lead ECG Pattern

Based on Anatomic Region

The size of the anatomic area (AJ) that generated a particular ECG morphology

during pace mapping within low-voltage tissue was determined. A median of the 12-

lead ECG of the pace-maps of a particular region is shown in Fig. 2.9. The median

12-lead ECG morphology was then used as a template signal that was compared with

the pace maps assigned to this and other regions and a correlation coefficient was

generated. The spatial resolution of such a region was determined on the basis of

receiver operator characteristics curves that generated a cutoff value separating the

median ECG electrogram of a region (AJ) from pace maps of other regions. This

was done for each patient in the low-voltage area where pacing was performed. The

gold standard was whether or not a pace map belonged to a particular region or not.

Once the cutoff value was determined for each region, the area encompassing sites

with a correlation coefficient equal or greater than the cutoff value was measured on

the electroanatomic map. The spatial resolution then was averaged for all patients

and the areas were reported per region in Table 2.1.

A B C D E

Anatomic area (cm2) 13 13 22 62 26
(12− 15) (10− 17) (20− 29) (57− 69) (23− 32)

Spatial resolution (cm2) 15 20 18 20 16
(11− 20) (15− 21) (9− 25) (14− 27) (9− 26)

F G H I J

Anatomic area (cm2) 19 21 22 30 21
(16− 23) (17− 23) (19− 30) (27− 32) (19− 25)

Spatial resolution (cm2) 14 10 11 10 18
(7− 23) (5− 21) (6− 17) (8− 21) (12− 28)

Table 2.1:
Spatial resolution of each region. Anatomic area and spatial resolution
data are displayed as median values and (interquartile range).
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Figure 2.9: Median of ECGs from regions A to J.

2.4.3 Discussion

The 12-lead ECG of postinfarction VT contains localizing information that en-

ables determination of a region of interest in the 10−20 cm2 range for more than 70%

of VT exit sites in a given sector. Identification of an area of interest up-front will

help to facilitate mapping and ablation of complex postinfarction VTs, especially in

patients with large scars. However, the accuracy depends on regions. A previously-

used algorithm had an accuracy of 70% for predominantly apical septum regions (A,

B)[26]. These were the regions that performed worst on the computerized analysis,

suggesting that these algorithms are complementary and that the automated algo-

rithm can be further improved. In the previously published algorithm, 50% of the

VTs did not fit any particular pattern and therefore could not be classified, making

the algorithm impractical. The main limitation of the previously described algorithm

is the lack of applicability for patients with prior anterior wall infarctions and for

right bundle branch block VT morphologies. In contrast, the computerized algorithm

performed best in regions affected by anterior wall infarcts (region D). The discrimi-

natory value of the computerized algorithm was imperfect in the apical septum area
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where the accuracy was around 50%. However, if 2 zones are combined, the accuracy

for determining the larger sector improved to approximately 70% in these regions.

Since there are no clear-cut demarcations between left ventricular regions and

because infarct scars are not necessarily confined to one region, it seems appropriate

to use a ranking classification indicating the best and second-best matching regions

for test data. In order to identify a VT exit region (AJ) based on the 12-lead ECG, an

average of 1.7 attempts were needed to get to the correct region. Since the mean size

of the ECG-determined region is approximately 15 cm2, combining 2 regions results

in an area of 30 cm2 in which more than 80% of VT exit sites could be assigned

to. The mean scar area in the patients in whom the mapping data were obtained

is a mean of 85 cm2; the 12-lead ECG helps to narrow down the area of interest to

approximately one-third for 80% of VTs.

2.5 Conclusion

We have shown that an SVM is capable of classifying the 12-lead ECG into 10

anatomic regions with relatively high accuracy, as compared with methods developed

in the 80’s. There are several questions that deserve further study. The SVM used in

the analysis is based on one versus one framework, rather than a unified multi-class

classifier. Recent studies have shown that mutli-class classifiers may outperform bi-

nary classifiers such as one-versus-all [27, 28]. The samples in each of the 10 anatomic

regions are not uniform, and could benefit from a formulation as an imbalanced learn-

ing problem, studied in Chapter VI of this thesis. These comments motivate the study

of related problems in the following chapters.
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CHAPTER III

Review of Optimization for Group Structured

Variable Selection

3.1 Introduction

This chapter provides a brief a review of a useful optimization algorithm for solv-

ing the general sparse structured statistical learning problems proposed in Chapter

I. Augmented Lagrangian Methods and Alternating direction method of multipliers

(ADMM) have been successful techniques for solving problems with structured or

patterned data matrices, especially when the objective functions can be viewed as

the summation of several functions, and each function can be optimized efficiently

if they are solved independently. This is exactly the case in the formulation (1.1),

involving the summation of a loss function and a regularization function. We start by

motivating augmented Lagrangian methods, which frame the constrained optimiza-

tion problems as penalized unconstrained problems. ADMM is then introduced as an

algorithm for optimizing over the augmented objective function.
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3.2 Augmented Lagrangian Methods

Consider the constrained problem

min
w

f(w)

s.t. h(w) = 0
(3.1)

in which f and h are twice continuously differentiable. We can find the minimum of

f over the constraints by computing an unconstrained minimum of the augmented

Lagrangian [29], defined as

Lµ(w, λ) = f(w) + λ′h(w) +
µ

2
||h(w)||22. (3.2)

This is the Lagrangian function for

min
w

f(w) + µ
2
||h(w)||22

s.t. h(w) = 0.
(3.3)

Notice that problem (3.3) has the same local minima as problem (3.1). Assume that

w∗ and λ∗ satisfy

∇wL(w∗, λ∗) = 0, ∇λL(w∗, λ∗) = 0

v′∇2
wwL(w∗, λ∗)v > 0, ∀v 6= 0,∇h(w∗)′v = 0

where L is Lagrangian L(w, λ) = f(w) + λ′h(w). It can be shown that w∗ is a strict

local minimum of f subject to h(w) = 0, and there exist γ > 0 and ε > 0 such that

Lµ(w, λ∗) ≥ Lµ(w∗, λ∗) +
γ

2
||w −w∗||22, ∀||w −w∗||2 < ε

for some µ such that ∇2
wwLµ(w∗, λ∗) is positive definite [29]. Since w∗ is an uncon-

strined local minimum of Lµ, we can try to solve problem 3.1 by minimizing Lµ.
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3.3 Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) [30, 31, 32, 33] is applicable

to solving problems of the form

min
w,m

H(w) +G(m)

s.t. Aw +Bm = b.

(3.4)

According to the discussion in Section 3.2, we can attach a Lagrange multiplier to

the linear constraints, add a quadratic penalty, and try to find the minimum of the

augmented Larangian function. The augmented dual function is

LDual(t) = min
w,m

H(w) +G(m) + t′(b− Aw −Bm) +
µ

2
||b− Aw −Bm||22.

Notice that

∇LDual(t) = b− Aw −Bm,

which suggests a dual ascent method [30],

t← t + α∇LDual(t).

The optimization over w and m can be implemented by coordinate descent, which

results in the ADMM algorithm [30, 31, 32, 33] .

Algorithm 1: ADMM

1 set τ = 0, choose µ > 0, m0, w0, t0;
2 while stopping criterion is not satisfied do
3 wτ+1 = arg min

w
H(w) + t′τ (b− Aw) + µ

2
||b− Aw −Bmτ ||22

4 mτ+1 = arg min
m

G(m) + t′τ (b−Bm) + µ
2
||b− Awτ+1 −Bm||22

5 tτ+1 = t + α(b− Awτ+1 −Bmτ+1)
6 τ = τ + 1
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Convergence analysis of ADMM can be found in [34, 30, 31]. In particular, it has

been shown that ADMM converges linearly if H and G are strongly convex [31]. A

function f is strongly convex if there exists a constant σ > 0 such that

ηf(u) + (1− η)f(v)− f(ηu + (1− η)v) ≥ ση(1− η)||u− v||22

for η ∈ [0, 1]. From the KKT conditions,

b− Aw −Bm = 0

0 ∈ ∂H(w∗)− A′t∗

0 ∈ ∂G(m∗)−B′t∗

Goldstein, et al. proposed the following residual measurements

rτ = b− Awτ −Bmτ

qτ = µATB(mτ )−mτ−1

to examine how closely the iterates satisfy the optimality conditions [31]. They showed

that ||rτ ||22 ≤ O(1/τ) and ||qτ ||22 ≤ O(1/τ). Luo extended the convergence of 2 block

ADMM to K block ADMM (K > 2), i.e., where the objective function becomes a

summation of K functions [30]. The authors of [30] showed linear convergence for the

general multi-block ADMM.

The ADMM algorithm is widely applied to structured optimization [35]. Consider

the general regularized statistical learning formulation in (1.1). If minimizing V

and R independently is efficient, then ADMM will be an appropriate candidate for

developing the algorithm for problem (1.1). Suppose F in (1.1) can be parameterized

35



by w, we can rewrite the problem in the ADMM formulation as

min
w,m

V (w, X, Y ) + λR(m)

s.t. w −m = 0.

By manipulating the linear and quadratic terms added to the objective in the aug-

mented Lagrangian, and rewriting them in a single quadratic term [35], we have the

ADMM algorithm for general optimization problems defined in (1.1). Although the

Algorithm 2: ADMM algorithm for general optimization problems defined by
(1.1).

1 set τ = 0, choose µ > 0, m0, w0, d0;
2 while stopping criterion is not satisfied do
3 wτ+1 = arg min

w
V (w) + µ

2
||w −mτ − dτ ||22

4 mτ+1 = arg min
m

λR(m) + µ
2
||wτ+1 −m− dτ ||22

5 dτ+1 = d−wτ+1 + mτ+1

6 τ = τ + 1

convergence is based on strong convex assumptions, ADMM has been widely applied

in practice, even to nonconvex problems [33]. The optimization problems for classifi-

cations in Chapter IV, Chapter V, and Chapter VI have convex objective functions

but not strong convex functions, and the eigen-decomposition objective function for

dimension reduction problems in Chapter VII is nonconvex. We empirically demon-

strate the effectiveness of solving these statistical learning problems with structured

sparsity constraints by the ADMM algorithm.

3.4 Conclusion

We discussed a general optimization algorithm applicable to statistical learning

problems with constraints. In the following chapters, we specialize the algorithm to

different loss functions V and regularizations R. In Chapter IV, the loss function
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is the hinge loss [1, 36] for binary SVMs, and R is a L1 L2 mixed norm to impose

group structured sparsity. Chapter V also discusses how to learn categorical re-

sponses with structured sparsity constraints, and extends sparse binary classification

to sparse multi-class classification by specializing the loss function to a multi-class

hinge loss. Chapter VII formulates a sparse supervised dimension reduction problem.

The function V becomes concave and there are additional equality constraints to

satisfy. Although there is currently no convergence guarantee for solving nonconvex

problems by ADMM in the literature, we are able to show empirical performance

improvements using our ADMM structured sparsity approach.
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CHAPTER IV

Binary Classification with Variable Selection:

Application to 3D Cell Microscopy

4.1 Introduction

In this chapter we formulate a sparse support vector machine in which the sparsity

is imposed on groups of variables by penalizing the loss function with L1/L2 mixed

norms. The mixed norms penalty avoids overfitting, which is common as variable

dimension increases and becomes much larger the number of samples. We propose a

novel algorithm to solve the binary SVM with group structured variable selection by

ADMM, also known as splitting methods, discussed in Chapter III. The methodology

is applied to 3D cell microscopy to learn the most discriminating population-based

features to distinguish between different populations of entamoeba histolytica para-

sites. The features are the shape information obtained by spherical harmonics analysis

of the cell surface, and the variable group structures are defined according to (1) the

degree and order of spherical harmonics, and (2) the sequential time of observance.

Experiments show that we can obtain significant improvement in terms of error rate

relative to standard SVMs. The selected features provide biological insights and

interpretations about the movement of cells.

The chapter is organized as follows. Section 4.2 reviews the binary classification,
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and introduces SVM as a nonparametric classification method. Section 4.3 intro-

duces different sparse SVMs that have been proposed in the literature and develops

a new formulation to accommodate group structures on the features, followed by the

implementation details in Section 4.4. In Section 4.5, we present the application of

the SVM with group structured variable selection to 3D cell microscopy. Section 4.6

concludes the chapter.

4.2 Binary Classification

Suppose there is a system that takes an input vector X ∈ Rp and generates

an output vector Y ∈ Rq. The goal of statistical decision is to learn a function

that describes the relationship between the independent variable X and dependent

Y. The relationship can be described as a function f(X) [4]. When the output Y

is a univariate categorical response, without loss of generality Y ∈ {1, .., K}, it is

known as a classification problem. In these problems, the task is to find an accurate

prediction of Y given the input features X, and the accuracy can be measured by

the error rate, E[Y 6= f(X)]. The optimal solution to minimize the error rate is

the maximum a posteriori estimation, often denoted as the MAP rule [37]. We can

view the decision as partitioning the observation space into decision regions, Dk,

k = 1, ..., K. The error rate can be written as

E[Y 6= f(X)] = 1− E[Y = f(X)] = 1−
∑
k

πk

∫
Dk

h(X = x|Y = k)dx

in which h denotes the density function and πk denotes the prior probability P (Y =

k). Therefore, the optimal solution to partition the observation space is to assign x to

Dk for which πkh(x|Y = k) is maximized, or equivalently for which h(Y = k|X = x)

is maximized.

If we know the exact joint distributions of X and Y under each class, then an
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optimal minimum probability of error classifier exists and is equal to a likelihood

ratio comparator. The optimal classifier can be found by fitting the parameters in

the model to the data. For example, assume that given the class label k, the density

function h(X|Y = k) is a member of the Gaussian family of models having form,

h(X = x|Y = k) =
1

(2π)p/2|Σk|1/2
e−

1
2

(x−µk)′Σ−1
k (x−µk)

in which µk and Σk are the known mean and known covariance matrix in each class k

respectively.The minimium probability of error classifier is given by the MAP decision

rule of the form

arg max
k
{πkh(X = x|Y = k)} = arg max

k
{ln πk −

1

2
ln |Σk| −

1

2
(x− µk)′Σ−1

k (x− µk)}.

When the covariance matrices Σk are identical the MAP rule classifies an obser-

vation x to the class k having mean µk that is at minimum Mahalonobis distance

from X, where the Mahalanobis distance is (x − µk)′Σ−1
k (x − µk). If the covariance

matrices Σk are identical then the MAP classifier reduces to a linear classifier. In this

case the MAP rule simplifies to

arg max
k
{πkh(X = x|Y = k)} = arg max

k
{lnπk + x′Σ−1µk −

1

2
µ′kΣ

−1µk}.

When the mean and covariance are unknown but there exists a training data set

(yi,xi), i = 1, . . . , n, the means and covariance matrices can often be estimated and

substituted into the MAP decision rules above. Another parametric model approach

to classification is logistic regression. In this approach one models the posterior

probability as a logistic function of the independent variables x

P (Y = k|X = x) =
exp(β′kx + β0,k)∑
l

exp(β′lx + β0,l)
. (4.1)
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where βk are model parameters that are fitted to the data. In practice, the logistic

regression model is fitted by maximum likelihood [4], which is an optimal solution

when the prior probabilities πk are the same for all k.

Support Vector Machines (SVM) [1, 36] have been a popular classification tech-

nique recently. Instead of imposing a parametric model on the joint distributions, it

was first designed for binary classification, searching for a hyperplane to separate the

two classes. Let f(x) = w′x + b be a decision function that assigns observation x to

sign(f(x)), then f(x) = 0 is a hyperplane in Rp. In the case where the classes are

linearly separable, in other words there exists a hyperplane such that yi(w
′xi+b) > 0

for all yi ∈ {−1, 1}, and i ∈ {1, ..., N}, there may be multiple solutions of the hy-

perplane. Vapnik proposed to search for a hyperplane that brings the largest margin

between the classes [1]. Consider the following problem

min
w,b

1

2
||w||22 (4.2)

s.t. yi(x
′
iw + b) ≥ 1 , i = 1, ..., N.

The signed distance of a point x to the hyperplane defined by f(x) = 0 is 1
||w||2f(x).

Hence, when the data points are linearly separable, the optimization is searching for

the solution that gives the largest margin, see Fig. 4.1.

Figure 4.1: Separating Hyperplane in support vector machines [1].
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When the data points are not linearly separable, one can introduce slack variables

ξi to penalize the misclassified points. The generalization to nonseparable/overlap

cases is known as the soft margin hyperplane proposed in [1].

min
w,b,ξi

1

2
||w||22 + γ

N∑
i=1

ξi (4.3)

s.t. yi(x
′
iw + b) ≥ 1− ξi , ξi ≥ 0, i = 1, ..., N.

The solution to the generalized soft margin SVM (4.3) can be found by quadratic

programming techniques. It is worthwhile to analyze the solution of the program to

obtain insight to SVMs [4]. First we form the Lagrange function

L =
1

2
||w||22 + γ

N∑
i=1

ξi −
N∑
i=1

αi[yi(w
′xi + b)− (1− ξi)]−

N∑
i=1

µiξi,

in which αi and µi are the Lagrange multipliers. To minimize with respect to the

variables w, b and ξ, we set the derivatives with respect to these variables to 0,

obtaining

w =
N∑
i=1

αiyixi

N∑
i=1

αiyi = 0

αi = γ − µi, i = 1, ..., N

and the Lagrange multipliers αi , µi and the slack variables ξi should be nonnegative.

The dual objective function can then be expressed as

LDual =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
′
ixj.
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From the dual objective function and the invoking KKT conditions

αi[yi(w
′xi + b)− (1− ξi)] = 0

µiξi = 0

yi(w
′xi + b)−(1− ξi) ≥ 0

we obtain the optimal hyperplane weight vector w∗ =
N∑
i=1

α∗i yixi. It is obvious from

the KKT conditions that the weight vector only depends on the data points whose

Lagrange multipliers satisfy αi > 0. These points are the support vectors. In other

words, the SVM solution, specified by the hyperplane {u ∈ Rp : u′w + b = 0}, only

depends on a few samples that are close to the class boundary. It is useful to view the

slack variables as part of a loss function, know as the hinge loss function. Since we

are minimizing over the summation of ξi and ξi should satisfy the conditions ξi ≥ 0

and yi(x
′
iw+b) ≥ 1−ξi, one can conclude that ξi = 0 if 1−yi(x′iw+b) ≤ 0, otherwise

ξi = 1 − yi(x′iw + b). We can replace ξi by the hinge loss, which is represented as

[1− yif(xi)]+.

We rewrite the problem in the general form discussed in Chapter III.

min
f

n∑
i=1

V (f,xi) +R(f) (4.4)

where V denotes a convex loss function that upper-bounds the 0-1 loss (misclassifi-

cation error), and R is a regularization function that enforces smoothness. The loss

function should be a good surrogate for the non-convex 0-1 loss, such as the hinge
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loss function

V (f,xi) = [1− yif(xi)]+ (4.5)

R(f) =
λ

2
||w||22.

The fact that the hinge loss function doesn’t penalize those data points that satisfy

the inequality 1−yif(xi) ≤ 0 confirms that the solution only depends on the support

vectors. Different modifications of the loss function have been proposed in the litera-

ture. For example, the truncated hinge loss is designed to reduce the effect of outliers

[38], differentiable approximations or the integral of sigmoid function are proposed to

enable second order methods, e.g., Newton method to be applied to SVM [39, 40], and

smoothing the hinge loss by a strongly convex function can lead to faster algorithms

[41, 42]. In the following discussion, we focus on the standard hinge loss function.

4.3 Sparse Binary Support Vector Machines

In order to encourage a sparse normal vector w in [43] it was proposed to apply

a L1 norm penalty on the weight vector by replacing the regularization function in

(4.3) by

R(f) =
λ

2
||w||1.

A sparse weight vector has advantages over the standard SVM weight vector when

there are redundant noise features and the total number of samples is much less

than the dimension of the features. The L1 norm was introduced to induce sparsity

in regression problems [44, 45]. Several different approaches have been proposed

to solve the sparse SVM optimization, such as newton method [46], unconstrained

convex differentiable minimization [47]. A comparison of optimization methods for

L1 regularized SVM can be found in [48]. The parameter for the regularization term
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can be found by cross-validation or regularization path techniques [49, 50].

Later more extensions of L1 penalty were proposed. The weighted L1 penalty [51]

constructs the adaptive weights using the 2-norm SVM, called the hybrid SVM.

R(f) = λ

p∑
j=1

αj|wj|

Fussed lasso was proposed to penalize the L1 norm of both the coefficients and their

successive differences [52], which can expressed as

R(f) =
λ1

2
||w||1 +

λ2

2

p∑
j=2

||wj − wj−1||1.

Elastic-net penalty [53] has also been applied to the SVM [54]. This doubly regular-

ized SVM has a mixture of the L1 norm penalty and the squared L2 norm penalty.

The former term allows variable selection, whereas the latter one groups the correlated

variables together.

R(f) =
λ1

2
||w||1 +

λ2

2
||w||22.

A few more extensions have been proposed recently. For example, the non-convex

penalty, smoothly clipped absolute deviation (SCAD) was proposed to overcome the

bias of L1 penalty on large coefficients [55]. The SCAD penalty with a > 2 is

R(f) =


λ||w||1 if ||w||1 ≤ λ

− (||w||22−2aλ||w||+λ2)

2(a−1)
if λ < ||w||1 ≤ aλ

(a+1)λ2

2
if ||w||1 > aλ.

A more general Lq norm penalty is discussed in [56]

R(f) = λ

p∑
j=1

||wj||q
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and a combination of L0 and L1 penalties was proposed in [57]. The former introduces

local quadratic approximation algorithm to solve the optimization, and the latter

optimization is converted into a mixed integer programming problem.

In this chapter we apply a method to promote group sparsity by applying a mixed

L1/L2 norm to the weight vector. The technique had been successfully applied to

regression problems [58, 59], and can be extended to the SVM by reformulating the

regularization function as

R(f) =
G∑
g=1

||wIg ||2 (4.6)

where Ig is the set indexing the variables that are in the gth group. This will provide

better interpretation when the group structure is given.

4.4 Algorithmic Implementation

To solve the optimization problem (4.4) with the sum of loss function V (4.5) and

regularization R specified by (4.6), we use a variable splitting approach that is tailored

to optimization of a sum of two functions. Consider an unconstrained optimization

problem in which the objective is the sum of two functions [35]:

min
v
f1(v) + f2(v)

The variable splitting method introduces a new variable w as the argument of f2,

under the constraint that v = w.

min
v,w

f1(v) + f2(w) s.t. v = w

This constrained problem can be solved by unconstrained methods if we add a

quadratic penalty

min
v,w

f1(v) + f2(w) +
u

2
‖v − w‖2

2
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which suggests an alternating splitting algorithm, alternating between solving the

unconstrained problem with respect to v and w. Applying these ideas to our problem,

we can modify the optimization to form an equivalent problem, in which the newly

introduced variable m is constrained such that m = w:

min
w,m

1

n

n∑
i=1

ξi + λ

G∑
g=1

∥∥mIg

∥∥
2
, subject to m = w and

(w′ xi + b) ≥ 1− ξi, ξi ≥ 0, ∀i

This alternating splitting method yields the following novel algorithm for group sparse

classification:

Algorithm 3: Proposed sparse SVM with group structured variable selection.

1 set τ = 0, choose µ > 0, m0, w0, d0

2 while stopping criterion is not satisfied do

3 wτ+1 = arg min
w

1
n

n∑
i=1

ξi + µ
2
‖w −mτ − dτ‖2

2

4 s.t. ∀i (w′xi + b) ≥ 1− ξi, ξi ≥ 0

5 mτ+1 = arg min
m

λ
G∑
g=1

‖mIg‖2 + µ
2
‖wτ+1 −m− dτ‖2

2

6 dτ+1 = dτ −wτ+1 + mτ+1

7 τ = τ + 1

Line 3 in Algorithm 3 is a quadratic programming problem. We apply the dual

coordinate descent method implemented for large-scale SVM to solve the QP [60, 61].

It is similar to L2 regularized SVM formulation except the offset term mit + dit in

the squared L2 norm. The corresponding dual Lagrange can be expressed as

LDual =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
′
ixj − (mit + dit)

N∑
i=1

αiyixi.

And given α, the corresponding weight vector is wit =
N∑
i=1

αiyixi+mit+dit. We adopt

the algorithm in [60] to iteratively solve for the updates wit+1, shown in (Algorithm
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4).

Algorithm 4: The dual coordinate descent method for the subproblem in Al-
gorithm 3

1 while stopping criterion is not satisfied do
2 for i=1 to N do
3 G = yiw

′xi − 1

4 PG =


min(G, 0) if αi = 0
max(G, 0) if αi = γ
G if 0 < αi < γ

5 If PG 6= 0

6
∆αi = min(max(αi −G/x′ixi, 0), γ)− αi
w← w + ∆αiyixi

Line 5 in Algorithm 3 has a closed form solution. Let c = wτ+1 − dτ , then

the solution of the subvector mIg is given as mIg = [||cIg ||2 − λ
µ
]+

cIg
||cIg ||2

. This is a

multidimensional shrinkage-thresholding operator [62].

4.5 Application: Spherical Harmonics Based Classification

and Analysis of Highly Deforming Cells in 3D Microscopy

Characterizing cell morphology is of crucial importance to study many fundamen-

tal biological processes involving cellular dynamics. For instance, cells and unicellu-

lar organisms characterized by amoeboid motion exhibit an ordered cycle of complex

shape changes in order to generate movement [63]. Understanding cellular shape

and movement requires efficient shape quantification tools to describe and classify

the wide variety of shape configurations, with the aim of deciphering the biological

mechanisms underlying cell motion.

In the context of highly deformable cells, such as cells exhibiting amoeboid mo-

tion, robust shape description and analysis is particularly challenging, due to the

high degree of variability that can be observed within a so-called homogeneous popu-

lation, while different populations may exhibit visually similar deformation patterns.
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Therefore, traditional shape descriptors based on a voxelized representation of the

cell volume are either too sensitive to small shape variations, and thus cannot be

used to discriminate different cell populations. To address this issue, the community

has recently shifted toward more advanced mathematical descriptors based on fre-

quency analysis, such as the SPherical HARMonics (hereafter SPHARM) transform

[64, 65, 66]. The SPHARM transform considers any closed surface as a function of the

unit sphere, and decomposes this function into a unique set of coefficients in a basis

of polynomial functions, facilitating subsequent shape characterization and classifi-

cation. This technique offers interesting properties such as position and orientation

invariance (when properly handled), and is thus well suited for shape sets with high

variability such as living cells [2].

We present a novel approach to classify populations of living cells based on shape

information obtained via spherical harmonics analysis of the cell surface. Classifica-

tion is achieved using a Support Vector Machine classifier with group structured vari-

able selection, using the extracted spherical harmonics coefficients and their group-

based correlation as feature vector. The variable selection lets the classifier isolate the

most representative features, which can be further analyzed in a qualitative manner.

Supervised classification algorithms such as support vector machines (SVM), lin-

ear discriminant analysis (LDA), and nearest neighbor algorithms [67] are most often

associated with machine automation of pattern recognition. When the feature dimen-

sion is high, sparsity-constrained classifiers are especially desirable since they reduce

otherwise severe over-fitting errors. Such classifiers perform variable selection by elim-

inating those feature dimensions that are the least powerful discriminants, retaining

only the most important ones. These important variables alone are of interest as they

can provide an explanatory model, similarly to the principal component in LDA that

best differentiate between classes. By applying this approach to SPHARM features,

we wish to build an optimal classifier which can be used as a tool for exploring the
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Figure 4.2:
Image samples of two cell populations observed in fluorescence mi-
croscopy. Left: WT population. Right: ∆CP5 population. Images are
Maximum Intensity Projection of the original 3D imaging data (cf. sec-
tion 4.7 for more details). These samples illustrate the difficulty in dis-
tinguishing the two populations using simple visual assessment.

major shape differences between cell populations.

The proposed approach is used to classify populations of entamoeba histolytica

parasites, which are unicellular organisms responsible for the amoebiasis disease. A

recent study has shown that parasites with chemically altered collagen degradation

ability were still able to migrate through collagen gels at the same speed as unaltered

parasites [68]. This finding suggested that cell deformation in the chemically modified

condition was also altered, however only limited shape information was available to

precisely describe this difference. A raw image sample of each population is shown in

Fig. 4.2, illustrating the difficulty of the problem regarding simple visual distinction.

4.5.1 Approach

The goal is to characterize the shape of highly deforming cells evolving in a 3D

environment, and to use this shape information to classify different populations with

visually similar deformation patterns. We describe below the successive steps of the
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approach, and defer technical aspects on how the cell shape information is extracted

in the Methods section.

4.5.1.1 Spherical Harmonics Analysis

On the unit sphere, an orthonormal basis for the Hilbert space of square-integrable

function is given by the spherical harmonics (cf. Fig. 4.3):

Y m
l (θ, ϕ) = kml P

m
l (cos θ)eimϕ,

where l and m are respectively the degree and order of the harmonic, kml is the

expansion coefficient and Pm
l is the associated Legendre polynomial.

m =
0

m = 1
Re Im

m = 2
Re Im

m = 3
Re Im

l = 0

l = 1

l = 2

l = 3

Figure 4.3:
First Few Spherical Harmonics (l: degree, m ≤ l: order). Adapted from
Weisstein, E.W. “Spherical Harmonic” from MathWorld – A Wolfram
Web Resource, http://mathworld.wolfram.com/SphericalHarmonic.html

Using this basis, any spherical scalar function f(θ, ϕ) can be expanded as follows:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

f̂ml Y
m
l (θ, ϕ),

where f̂(l,m) is the (l,m) harmonic coefficient, given by:

f̂ml = kml

π∫
0

2π∫
0

e−imϕf(θ, ϕ)Pm
l (cos θ) sin θ dϕ dθ.
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The coefficients f̂ml are unique and can thus describe any arbitrary shape. The spec-

tral decomposition of the input signal is then straightforward: lower degrees (i.e., l)

correspond to low frequencies and hence describe the global shape of the object, while

higher degrees describe the details of the surface, as illustrated in Fig. 4.4.

Figure 4.4:
SPHARM reconstruction of an arbitrary mesh (left) with a maximum
level lmax of 5 (middle) and 11 (right). Higher levels reconstruct the finer
details of the surface. Adapted from [2].

Higher dimensional (non-scalar) spherical functions can also be described by ex-

panding each component of the function independently. Here we perform the trans-

form on a surface defined in Cartesian space (x, y, z) and mapped to a spherical signal

defined in the polar system (θ, ϕ) as v(θ, ϕ) = (x(θ, ϕ) y(θ, ϕ) z(θ, ϕ))′. As (θ, ϕ) runs

over the sphere, v(θ, ϕ) runs over the object surface. By applying the SPHARM trans-

form to each component of v(θ, ϕ) independently, we obtain coefficients with three

components.

A classical problem in shape comparison and classification resides in the degrees

of freedom of the shape space. In order to enforce translational invariance, all sur-

faces are translated to an arbitrary origin before the mapping step. For rotational

invariance, one may rely on the intrinsic property of the SPHARM transform that

any arbitrary rotation in the parameter space corresponds to a rotation in the ob-

ject space. Following [64], we expand each component of the spherical signal v(θ, ϕ)

independently, yielding three set of coefficients Cx, Cy, Cz, and compute rotationally

invariant descriptors as Ĉ =
√

(C2
x + C2

y + C2
z ). These translationally and rotation-

ally invariant descriptors will be used in the remainder of this work.

52



4.5.2 Population Shape Discrimination and Group Structured Variable

Selection

Assume that we have a dataset of 2 populations, comprised of n samples. Each

sample is observed over K cells from the same type of population and each cell is

recorded in a a video of Q frames. The tracking of each cell is described in Section

4.7. Motivated from the idea of identifying the cell types in a Petri dish, in which

often multiple cells are present in the microbiological culture, we propose to use a

SPHARM representation, and extract from each sample a set of population feature

vector xi ∈ Rp and a population label yi ∈ {1,−1}, where 1 represents the ∆CP5

population and −1 represents the WT population. A standard binary classifier can be

trained over this data to give minimum classification error probability. However, when

the feature dimension p is large such a classifier will suffer from severe over-fitting

error. To overcome this deficiency, sparsity-penalized classifiers have been developed

[43, 69], that “sparsify” the feature vector, i.e., finding a reduced number of features

that attain the minimum cross-validated error. This is tantamount to selection of

the most discriminating features. We adopt a similar sparse penalty approach to

include group structure unique to the problem of estimating shape parameters in a

cell population.

4.5.2.1 Population features

We obtain the rotationally invariant descriptors for each cell, in each frame at a

given time point t, expressed over the SPHARM from l = 0 to l = 5. These features

can be represented as Ĉm
l (i, cellk, t), where i ∈ {1, 2, ..., n} is the sample indicator,

k ∈ {1, ..., K} indicates the cell and t ∈ {t1, ..., tQ} indicates the time at which the

frame is acquired. The feature space of SPHARM representation does not include the

information shared among the cells in the same sample, which can not be observed

by looking at a single cell image. We propose a set of population features to capture
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the inter-cell and intra-cell information, defined as follows.

Inter-cell features: Mean, auto-correlation and cross-correlation averaged over

cells provide features of dimensions 21Q, C21
2 Q, and 21CQ

2 respectively.

µml (i, t) =
1

K

K∑
k=1

Ĉm
l (i, cellk, t)

ρ(l1,m1),(l2,m2)(i, t) =

∑
k

Ĉm1
l1

(i, cellk, t)Ĉ
m2
l2

(i, cellk, t)

σĈm1
l1

(i, t)σĈm2
l2

(i, t)

Rm
l (i, t1, t2) =

∑
k

Ĉm
l (i, cellk, t1)Ĉm

l (i, cellk, t2)

σĈml
(i, t1)σĈml

(i, t2)

Intra-cell features: Mean and cross-correlation averaged over time provide fea-

tures of dimensions 21K and C21
2 K respectively.

µ̃ml (i, cellk) =
1

Q

Q∑
q=1

Ĉm
l (i, cellk, tq)

ρ̃(l1,m1),(l2,m2)(i, cellk) =

Q∑
q=1

Ĉm1
l1

(i, cellk, tq)Ĉ
m2
l2

(i, cellk, tq)

σĈm1
l1

(i, cellk)σĈm2
l2

(i, cellk)

4.5.2.2 Loss Function and Regularization

We follow the framework of sparse SVM discussed in section 4.3.

min
f

n∑
i=1

V (f,xi) + λR(f)

In order to obtain better interpretation of the features with group structures, we

select the loss function as the hinge loss function and the regularization function as

54



the mixed L1, L2 norm penalty.

V (f,xi) = [1− yif(xi)]+ , R(f) =
G∑
g=1

||wIg ||2.

Ig is the set indexing the variables that are in the gth group, which is useful as

we define the groups in section 4.5.2.3. Details about the algorithm for solving the

optimization problem is discussed in section 4.4.

4.5.2.3 Group Sparsity Constraints for Spherical Harmonic Features

We propose a novel set of group structures based on the population features, taking

into account that the SPHARM representation has several orders m corresponding

to the same degree level l and the auto-correlation provides several features with the

same time difference parameter ∆t = |t1 − t2|.

Iµl∗ = {µml (i, t) : l = l∗,∀i, t}

Iρ(l∗1,l∗2)(t)
= {ρ(l1,m1),(l2,m2)(i, t) : l1 = l∗1, l2 = l∗2, ∀i}

IRl∗ (∆t) = {Rm
l (i, t1, t2) : l = l∗, |t1 − t2| = ∆t, ∀i}

Iµ̃l∗ = {µ̃ml (i, cellk) : l = l∗,∀i, k}

Iρ̃(l∗1,l∗2)
= {ρ̃(l1,m1),(l2,m2)(i, cellk) : l1 = l∗1, l2 = l∗2, ∀i, k}

4.5.3 Results

We apply the presented approach on entamoeba histolytica parasites, with the goal

to distinguish a wild-type population (WT) from a ∆CP5 population. In order to

assess the performance of the proposed approach, and hence how well the two pop-

ulations can be distinguished, we compare classification results obtained by classical

SVM and by the proposed sparse SVM with group structured variable selection. In

each class, WT and ∆ CP5, K cells are randomly selected to form a sample, and each
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cell provides a video of length Q, in which the starting point of the video is random if

Q is less than the entire length of the video. To avoid imbalance in the training sam-

ples, we randomly subsample the larger class, so that the sizes of each class are exactly

the same. The regularization parameter λ is chosen with 2-fold cross-validation, 5

random permutations, and the performance is evaluated by leaving one sample from

each class out for the test set, repeated until every sample has been tested. The

entire experiment is conducted with 10 trials, and the number of cells in each sample

K ∈ {1, 2, ..., 14}, the number of frames in each video Q ∈ {10, 15, 20, ..., 40} are

varied to find the best combination. The best performance is found with the com-

bination of sparse SVM and all the population features. The averaged performances

can be found in Table 4.1. The best result by sparse SVM with all the population

features occur when K = 12 and Q = 30, whereas standard SVM without sparsity

attains the best when K = 12 and Q = 30, 35. The combinations of K and Q are

discussed in Section 4.7.

method SVM sparse SVM
error rate 0.1250 0.0875

standard error ( 0.0347) ( 0.0353)

Table 4.1:
Comparison between the classical SVM and sparse SVM with group struc-
tured variable selection.

The sparse SVM with group structured variable selection provides not only better

performance but useful interpretation of the features. To understand the roles of

each set of population features, we plot the selection frequency of them, examples

of inter-cell features and intra-cell features are illustrated in Fig. 4.5 and Fig. 4.6

respectively.

It is interesting to notice that the mean of l ≥ 1 SPHARM averaged over cells

are important for discriminating the WT and ∆CP5 populations. We plot the mean

of the features, i.e., 1
|{i:yi=1}|

∑
yi=1

µml (i, t) and 1
|{i:yi=−1}|

∑
yi=−1

µml (i, t), within the ∆CP5
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and WT populations independently in Fig. 4.7 and Fig. 4.8 for SPHARM l = 1 and

l = 5 respectively to illustrate the differences. Notice that in lower degree SPHARM,

the WT population has lower coefficients than the ∆CP5 population does, whereas in

higher degree SPHARM, the ∆CP5 shows larger coefficients than the WT population

does.

The auto-correlation of higher order SPHARM also plays an important role in the

classification. By showing the mean of these features averaged over each population

1
|{i:yi=1}|

∑
yi=1

Rm
l (i, t1, t2) and 1

|{i:yi=−1}|
∑

yi=−1

Rm
l (i, t1, t2) in Fig. 4.9, we notice that the

WT population de-correlates faster than the ∆CP5 population. We can quantify the

decay of the correlation in each population by measuring

vml (∆t, 1) =

∑
|t1−t2|=∆t, yi=1

Rm
l (i, t1, t2)

|{i, t1, t2 : |t1 − t2| = ∆t, yi = 1}|

vml (∆t,−1) =

∑
|t1−t2|=∆t, yi=−1

Rm
l (i, t1, t2)

|{i, t1, t2 : |t1 − t2| = ∆t, yi = −1}|

for ∆CP5 and WT respectively. Fig. 4.10 shows one of the major differences between

∆CP5 and WT populations, which suggests that the cell shape of the ∆CP5 popu-

lation at a given time t is greatly related to the shape at t − ∆t, in which ∆t > 0,

whereas the WT population can change the cell shape with less restriction.

Furthermore, the variable selection frequency is relatively high on the cross corre-

lation SPHARM features averaged both over the cells and over time between degree

l = 4 and l = 5. This may suggest that the higher degree SPHARM features describe

subtle shape information that is important in explaining the movement of entamoeba

histolytica parasites.
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4.6 Conclusion

Cell morphology is a key factor implicated in numerous biological processes, from

organ development to disease models. Yet, characterizing highly deforming cells based

on their morphology is particularly challenging due to the great variability of shapes

within a given population. Our goal is to develop quantitative tools to classify highly

deforming cells based on 3D shape information, and to extract key features describing

the differences between populations in a qualitative manner.

We have presented a supervised classification approach to characterize and clas-

sify populations of highly deforming cells observed in 3D microscopy. By performing

classification with group structured variable selection using spherical harmonics anal-

ysis of the cell shape, we obtained a classification accuracy far beyond what can be

achieved via visual inspection. Moreover the variable selection process allowed to

isolate several features of interest, allowing to pinpoint the differences between the

observed populations in a qualitative manner. We believe the proposed set of tools is

sufficiently generic to be applied on numerous types of cells. An immediate applica-

tion of this tool can be thought in the context of rapid disease diagnosis, where cell

populations can be rapidly analyzed to establish a diagnosis.

In the current study, we have exploited static shape information, although this

information was extracted from temporal sequences. We are currently extending the

current study spatiotemporal cellular morphodynamics, in order to embed trajectory

analysis into the process, with the goal to build spatiotemporal models of cellular

deformation, and complement current studies in the field of biology or biophysics

[70, 71].

4.7 Appendix
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Imaging protocol The cells are embedded into a 3D collagen matrix, letting them

deform and move freely by carving their way through the matrix. Images are acquired

on a laser scanning confocal microscope, producing 3D stacks of about 32 consecutive

2D slices of size 1024×1024 pixels each. Finally, 3D time-lapse sequences are obtained

by acquiring 90 of these 3D stacks with an interval of 10 seconds between stacks (i.e.,

the total observation time per condition is 15 minutes), yielding a typical data size

of 5.625 GigaBytes per 4D dataset. The total number of cells is 173 and the total

number of frames, 12863.

Cell surface extraction Cell surfaces were automatically segmented and tracked

throughout the sequence the Icy software [72]. Cells were first pre-detected on the

first frame of each sequence using the H-KMeans plugin (V4N7Q1), which creates

a binary volume for each object in the image. Using the 3D Active Meshes plugin

(P6W8D6), each binary volume is triangulated into a 3D triangular mesh, which is

then deformed automatically toward the cell boundary by minimizing an energy func-

tional comprising image-based and geometry-based terms. Segmentation is achieved

when the mesh reaches a steady-state, corresponding to a minimizer of the energy.

Tracking over time is done by initializing each subsequent frame by the resulting mesh

obtained on the previous frame. More details on this method can be found in [73].

Spherical mapping and harmonics transform Spherical mapping consists in

mapping the extracted cell surface onto the unit sphere, thus parameterizing the

original surface into a spherical signal that can be analyzed using spherical harmonics.

We refer the reader to [74] for a review of such parameterization methods. Surface

mapping and spherical harmonics features were performed using the SPHARM-MAT

toolbox (http://www.nitrc.org/projects/spharm-mat). In order to minimize shape

distortions inherent to the mapping process, we adopted the CALD approach [75],

which provides a bijective mapping on any arbitrary closed triangular mesh onto the

59



unit sphere while minimizing area and length distortions of the mapped mesh. An

illustration of the surface mapping process is given in Fig. 4.11.

Optimal feature vector construction The optimal set of parameters for the

length of the video (Q), and the number of cells in each sample (K) are determined

by grid search. Fig. 4.12 shows how the performance in terms of error rate varies

as these parameters change. As the number of cells in each sample increases, the

performance improves. However, the error rate also increases when the number of

cells in each sample reaches about 13. This is because the total number of cells is

fixed, the number of training samples decreases as we increase the number of cells in

each sample.
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Figure 4.5:
The selection frequency of inter-cell features by sparse SVM with group
structured variable selection. For a given SPHARM degree l, the
SPHARM order m = 0, 1, ..., l are in ascending order from the left to
the right and from the top to the bottom in the top and middle figures.
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The selection frequency of intra-cell features by sparse SVM with group
structured variable selection.
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Figure 4.7:
Heatmaps of the population features averaged over the ∆CP5 and WT
populations independently. Notice that the ∆CP5 population has smaller
l = 1 SPHARM coefficients than the WT population does.
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Figure 4.8:
Heatmaps of the population features averaged over the ∆CP5 and WT
populations independently. Notice that the ∆CP5 population has larger
l = 5 SPHARM coefficients than the WT population does.

64



auto-correlation of SPHARM degree=5, order=4,  CP5

frames

fr
a
m

e
s

 

 

5 10 15 20 25 30

5

10

15

20

25

30

-0.2

0

0.2

0.4

0.6

0.8

auto-correlation of SPHARM degree=5, order=4, WT

frames

fr
a
m

e
s

 

 

5 10 15 20 25 30

5

10

15

20

25

30

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.9:
Heatmaps of the population features averaged over the ∆CP5 and WT
populations independently. Notice that the ∆CP5 population presents
larger correlation than the WT population, especially in the upper right
corner in the heatmaps. This suggests that the de-correlation speed is an
important feature for discriminate these two populations, which can be
further understood in Fig. 4.10.
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Figure 4.11:
Spherical parametrization process. The original mesh (left) is first
mapped to the sphere (middle), then the mapping is re-adjusted to min-
imize local and global distortions (right). The two colors represent the
arbitrary North and South hemispheres of the mapped surface, and their
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The heat map of error rate under the sparse SVM classifier, with the
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sample varying from 1 to 14. The best combination occurs at Q = 30
and K = 12.
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CHAPTER V

Serially Sampled Multi-class Classification with

Variable Selection: Application to Gene

Expression Analysis

5.1 Introduction

In serially sampled multi-block multi-class classification, the task is to correctly

predict the label of a subject based on a set of time samples. Examples include evalu-

ation of a subject’s positive or negative response to drug treatment, or classification of

diseases based on gene microarray responses from multiple time points. In these ap-

plications, the common clinical test is to use a single test sample taken immediately

prior to patient diagnosis. However, as gene expression genotyping becomes more

prevalent in the era of personalized medicine, use of each patient’s baseline reference

sample can be expected to improve prediction performance. This chapter develops a

method for including such a baseline reference sample in the predictor.

High-dimensional applications, such as genomics expression analysis and ECG

classification, require parsimonious modeling. By pruning the total number of inde-

pendent variables or features, variable selection is a first step in building parsimonious

models. Accurate variable selection avoids the over fitting problem, and provides in-

terpretations of the most relevant variables for a predictive model. It is important to
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understand which variables are strongly relevant to the classification task, and how

their importance depends on time or subject in the population. For example, sparsity

penalized lasso techniques [4, 44] provide a computationally tractable way to perform

variable selection driven by objective function minimization. Here we introduce an

objective function minimization approach for variable selection that applies to more

general problems than simple prediction and classification.

First to generalize the current methods in binary classification [43] to multi-class

problems, we define a unified multi-class classifier. We adopt the Support Vector

Machine (SVM) approach. The idea of maximizing the margin between two classes

can be extended to multi-class problems. There are two common strategies that

have been proposed: (1) solving the multi-class problem by a series of binary SVM

classifiers [76, 77, 27]; (2) formulating a single unified multi-class SVM [78, 79, 80,

3, 81, 82]. The former approach has the advantage of building on the binary SVM

framework; the latter is more direct. We propose a unified multiclass classifier with

variable selection following the latter approach.

This chapter is organized as follows. In section 2, we formulate our problem by

discussing loss function used as surrogates in classification, and the proper regular-

ization that selects variables relevant simultaneously to all classes, and all references.

In section 3, we propose a general algorithm to train the classifier. Two real data

applications are presented in section 4 and 5, followed with discussion in section 6.

5.2 Multi-block Multi-class Classification

We have discussed the SVM in Chapter IV, which is designed for binary clas-

sification problems. Different methods have been proposed in the literature on the

extension from binary to multi-class classification. A discussion can be found in

[27, 28]. Two main strategies are (1) solving a series of binary SVM classifiers and

(2) a unified multi-class SVM, which is referred to as the ”single machine” approach
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in [28].

Examples of the former strategy includes one-against-all, one-against-one, and

averaged one-against-one. The one-against-all method trains a binary classifier for

each class k ∈ {1, 2, ..., K} versus all the other classes. The classification is made

by selecting the class with the largest margin from the decision boundary. The one-

against-one strategy trains one binary classifier for each pair of classes, and uses the

CK
2 binary classifiers to vote for the class. The decision is made by majority vote, also

known as ”max wins” strategy [76, 77, 27]. The unified multi-class SVM depends on

designing a generalized hinge loss function [78, 79, 80, 3, 81, 82]. It is not clear from the

comparisons in [27, 28] which strategy is the best, since there is no single strategy that

shows consistent improvement in terms of error rate performance relative to all the

other strategies. The unified SVM involves a solution of more complex optimization

problem, hence one may argue that training a series of binary classifiers is much more

practical. However, the unified strategy has the advantage that interpretation of the

features is simplified when using a sparse multi-class classifier. A unified sparse SVM

solution can provide the features that are important for distinguishing between all

the K classes.

Assume that we have a dataset of n samples from K populations observed under

r conditions. A multi-block multi-class classifier, for example [3], can be trained

over this data to give minimum classification error probability. However, when the

feature dimension rp is large such a classifier will suffer from severe over-fitting error.

To overcome this deficiency, sparsity-penalized classifiers have been developed [5],

that “sparsify” the feature vector, i.e., finding a reduced number of features that

attain the minimum cross-validated error. This is tantamount to selection of the

most discriminating features. In this section we introduce a new sparsity-constrained

multi-class classification algorithm for finding these features.

Let {(xi, yi)}ni=1 be the set of data for classification, in which xi is a rp dimensional
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Figure 5.1:
Classifying K different classes based on their temporal/spatial evolution
is a multi-block classification problem. The colored column vector corre-
sponds to a vector of features of different samples acquired over r blocks of
time. The matrix containing four colored rows generates a different score
(at right of equality) for each of the possible classes. The special multi-
block structured sparsity (white colored entries) of this matrix minimizes
overfitting.

vector, and yi ∈ {1, 2, . . . , K} is the corresponding label. When r = 1, this reduces

to the standard multi-class classification problem, whereas when r > 1, this is the

multi-block multi-class classification problem. We introduce a general and unified

way of solving such sparsity-penalized multi-class problems. The problem is to find

rp-dimensional hyperplanes to partition the feature space,

F = {f1, f2, · · · , fK}, where fk(x) = wk
′x + bk

and the decision rule is to assign the label that gives the largest confidence, arg max
k
{fk(x)},

where fk are smooth functions to be determined. This problem can be formulated as

the optimization

min
F

1

n

n∑
i=1

V (F,xi) + λR(F )
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where V denotes some convex loss function that upper-bound the 0-1 loss, and R is

a regularization function. The loss function should be a good surrogate for the non-

convex 0-1loss, and the regularization function should provide capability of variable

selection.

The first unified multi-class Support Vector Machine (SVM) was introduced in

[3]. This work introduced a generalized notion of the margin for multi-class problems.

They suggested solving the above optimization by using the representations

V (F,xi) =
[
max
r

(1− δyi,r + fr(xi)− fyi(xi))
]

+
(5.1)

R(F ) =
1

2

K∑
i=1

||wi||22.

We adopt the same loss function for our classifier, but introduce another regular-

ization function that accounts for group sparsity. The idea of introducing variable

selection penalty originates from [83], in which Frank and Friedman introduced a gen-

eralization of ridge regression and subset selection through the addition of a penalty

of the form λ
∑
j

||βj||1q to the residual sum of squares. By imagining the unit ball

for different values of q, one can view the parameter q as the degree to which the

variables is concentrated along the favored directions. For example, q = ∞ places

maximum concentration along the diagonals, and q = 0 place the entire mass on the

coordinate axes, which corresponds to L0 subset selection. Tibshirani [84] further

proposed the least absolute shrinkage and selection operator (lasso), corresponding

to the case q = 1. Tibshirani’s proposal has the advantage of being the penalty such

that it is the closest to q = 0, the L0 penalty, yet remaining convex. To generalize

the method of variable selection for binary classification to multi-class, multi-block
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classification (r > 1) , define W as follows:

W =


w′1
...

w′K

 =
[
w(1) · · ·w(rp)

]

in which w(j) is the jth column in the matrix W , and wk represents the kth row.

Notice that given j ∈ {1, 2, . . . , p}, any elements in the ith column of W such that

mod (i, p) = j, are related to the same variable j, and all elements in the kth row are

related to scoring the confidence of the sample belonging to class k.

In multi-class classification problems (r = 0), one can ensure that the predictor

variables are shared over all classes by forcing the columns of W to satisfy a coupled

sparsity condition: the number of non-zero terms should be small. By imposing

the coupled sparsity constraints, the complexity of the model is controlled by a few

variables that are important for discriminating all the classes. Variable selection under

this framework becomes more complicated than in binary classification, because one

would expect that an unrelated variable corresponds to a zero column in W rather

than a zero scalar. Wang and Shen extended the L1 SVM to the L1 MSVM by

imposing a penalty with q = 1 on the coefficients. They solved a problem of the form

[85]:

min
b,W

1

n

n∑
i=1

K∑
k=1

I(yi 6= k)[bk + w′kxi + 1]+ + λ

K∑
k=1

p∑
j=1

||wkj||1.

Although the L1 norm has the advantage of being directly related to lasso, it treats

all the wkj’s equally, which does not guarantee the variable sharing condition. Zhang

et al accounted for variable sharing by treating the coefficients in groups by imposing

a L∞ penalty as follows[5].

min
b,W

1

n

n∑
i=1

K∑
k=1

I(yi 6= k)[bk + w′kxi + 1]+ + λ

p∑
j=1

||w(j)||∞
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To extend the standard multi-class classification to multi-block multi-class classi-

fication, we propose solving the optimization with

R(F ) =

p∑
j=1

∥∥w̃(j)

∥∥
2

with w̃(j) =



w(j)

w(j+p)

...

wj+(r−1)p


. (5.2)

This ensures that coefficients corresponding to a shared variable over the mea-

surements under r conditions and over all classes are grouped appropriately. The

L2 norm instead of the L∞ norm is chosen in our formulation, because the L∞ ball

tends to favor solution with the scaled version of hadamard matrix, whereas L2 norm

penalizes any direction uniformly.

We can also extend the adaptive lasso [86, 87] to our multi-block multi-class

formulation to reduce the over-estimation issue. Suppose the initial estimation is

Finit, we can form a new optimization problem that depends on Finit.

min
F

1

n

n∑
i=1

V (F,xi) + λadaptRadapt(F, Finit) (5.3)

in which V is defined as the same generalized hinge loss function and

Radapt(F, Finit) =

p∑
j=1

||w̃(j)||2
||w̃init,(j)||2

.

An interesting property about adaptive lasso is that if the coefficients in the initial

estimation is 0, then the new estimation will also be 0. In other words, adaptive lasso

is a stage-wise screening process. The process can be repeat for multiple stages.
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5.3 Algorithmic Implementation

To solve our optimization problem with the combination of loss function (5.1)

and regularization (5.2), we apply the augmented Lagrangian method discussed in

Chapter III to the optimization.

We modify the optimization to form an equivalent problem, in which the newly

introduced variable M is constrained such that M = W , and the row vectors mk of

M obey the same structural pattern as the rows of W :

min
W,M

1

n

n∑
i=1

ξi + λ

p∑
j=1

||m̃(j)||2

subject to : ∀i, k (w′yi
xi + byi) + δyi,k − (w′kxi + bk) ≥ 1− ξi, M = W

The slack variables ξi from the generalized hinge loss function depend on W by the

constraints, and the regularization function penalizes the mixed L1/L2 norm of M .

By alternating splitting method we have an algorithm for the multi-block multi-class

classification problem (Algorithm 5).

Algorithm 5: Multi-block Multi-class Classification

1 set τ = 0, choose µ > 0, M0, W0, D0

2 while stopping criterion is not satisfied do

3 Wτ+1 = arg min
W

1
n

n∑
i=1

ξi + µ
2
||W −Mτ −Dτ ||2F

4 s.t. ∀i, k (w′yi
xi + byi) + δyi,k − (w′kxi + bk) ≥ 1− ξi

5 Mτ+1 = arg min
M

λ
p∑
j=1

||m̃(j)||2 + µ
2
||Wτ+1 −M −Dτ ||2F

6 Dτ+1 = Dτ −Wτ+1 +Mτ+1

7 τ = τ + 1

In each iteration, W can be solved by subgradient method. This enables us to

solve any convex loss function besides the generalized hinge loss we adopted, if its

subgradient exists. The subgradient method [88] is a simple iterative algorithm for

minimizing non-differentiable convex function. Suppose f is convex. To minimize f ,
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at each iteration, we take a step in the direction of a negative subgradient: x(k+1) =

x(k)−αkg(k), where x(k+1) is the kth iterate, g(k) is any subgradient of f at x(k). Similar

approaches based on subgradient methods can be found in [89]. Since the objective

function is exactly a quadratic programming problem and there exits fast algorithm

tailored to SVM classification problems, we adopt the sequential dual method [90, 61].

The dual of line 3 in Algorithm 5 can be written as

min
α

1
2

K∑
k=1

||wk||22 +
n∑
i=1

K∑
k=1

αki e
k
i

s.t.
K∑
k=1

αki = 0, αki ≤ 1
nµ
δyi,k ∀i, k

in which wk =
n∑
i=1

αki xi+mτ,k+dτ,k and eki = 1−δyi,k. Coordinate descent method can

be extended to decompose the dual problem into n subproblems, and each problem

corresponds to one of the n samples.

min
α1
i ,...,α

K
i

K∑
k=1

1
2
A(αki )

2 +Bkα
k
i

s.t.
K∑
k=1

αki = 0, αki ≤ 1
nµ
δyi,k∀k

where A = xix
′
i and B = w′kxi + eki − Aαki . This is the same optimization problem

discussed in [90, 61] except the representation of wk. We can adopt the subproblem

solver based on coordinate descent method.

In the second step, M has a close form solution. Let C = Wτ+1 − Dτ , then the

solution of each concatenated column of M is given as m̃(j) = [||c̃(j)||2 − λ
µ
]+

c̃(j)
||c̃(j)||2

,

[62].

Given that we can solve the multi-block multi-class classification with group struc-

tured sparsity, we can also find the solution for adaptive lasso formulation. We can
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reformulate problem (5.3) as the initial estimation problem [87]. Define

xnew,l,i = xl||w̃init,( mod (l,p))||2, l = 1, .., rp, i = 1, ..., n

w̃new,(j) =
w̃(j)

||w̃init,(j)||2
, j = 1, ..., p

then the adaptive lasso for multi-block multi-class classification can be formulated as

min
Fnew

1

n

n∑
i=1

V (Fnew,xnew,i) + λadaptR(Fnew).

The algorithm for multi-block multi-class classification can be applied to this problem.

5.4 Simulation Experiments

We implement two simulation models in [5], a five-class example and a four-class

example. The five-class example has independent variables with dimension p, and the

first two variables are generated according to N(µk, σ
2
1I2), where

µk = 2(cos([2k − 1]π/5), sin([2k − 1]π/5)), k = 1, 2, 3, 4, 5.

The remaining p− 2 variables are generated independently from N(0, σ2
2), and σ1 =

√
2, σ2 = 1. 250 samples are generated evenly from the model for training, another

250 samples for tunning the regularization parameter, and 50,000 samples for the

test set. We compare the proposed multi-class classification with L1/L2 mixed norm

penalty for group structured variable selection with the unified multi-class classifier

in [3]. We also test the proposed algorithm with prescreening each pairwise binary

classifications, i.e., the input variables to the multi-class classifier are the union of

the variables selected by any pairwise binary classification. The entire experiment

is repeated for 20 trials. We find that when p < n, the unified multi-class classifier

without variable selection performs the best. However, when p > n, the multi-class
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method error rate number of var. CZ IZ

the ideal classifier 0 2 998 0
1. unified linear SVM 0.61 1000 0 0
2. sparse unified SVM 0.57 47 952.5 0.5
3. sparse unified SVM, prescreen 0.50 13.95 985.8 0.25

p-values of one sided paired t-test:
method ER number of var. CZ IZ

(1,2) 1 > 2: 0.1438 1 > 2: 7.46× 10−19 1 < 2: 7.31× 10−19 1 < 2: 0.0105
(2,3) 2 > 3: 0.0399 2 > 3: 0.0783 2 < 3: 0.0771 2 > 3: 0.096
(1,3) 1 > 3: 2.42× 10−4 1 > 3: 2.02× 10−31 1 < 3: 1.87× 10−31 1 < 3: 0.0481

Table 5.1:
Simulation model 1, five-class example, with p = 1000. We compare the
performance of the unified multi-class SVM [3], the proposed multi-class
classification with group structured variable selection, and the proposed
method with prescreening. CZ: number of correct zeros in the multi-class
classifier, IZ: number of incorrect zeros in the classifier.

classifier with structured variable selection outperforms the non-sparse classifiers. The

results for p = 1000 are listed in Table 5.1. We also change the signal to noise ratio

by modifying

µk = 4(cos([2k − 1]π/5), sin([2k − 1]π/5)), k = 1, 2, 3, 4, 5.

The performance for all the methods improve, and the sparse unified SVM works bet-

ter than the nonsparse SVM. However, the sparse SVM with prescreening technique

performs worse than the one without prescreening. The results are shown in Table

5.2.

The second simulation model was designed for generating variables that are im-

portant for some of the classes but not all the classes [5]. This four-class example has

independent variables with dimension p, in which the first four variables are generated

from Unif [−1, 1], and the rest p − 4 of them from N(0, 82). 4 linear functions are
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method error rate number of var. CZ IZ

the ideal classifier 0 2 998 0
1. unified linear SVM 0.3303 1000 0 0
2. sparse unified SVM 0.0988 2.05 997.95 0
3. sparse unified SVM, prescreen 0.1217 9.60 990.40 0

p-values of one sided paired t-test:
method ER number of var. CZ IZ

(1,2) 1 > 2: 7.26× 10−31 1 > 2: 2.52× 10−71 1 < 2: 2.52× 10−71 1 6= 2: 1
(2,3) 2 < 3: 3.39× 10−6 2 < 3: 0.0475 2 > 3: 0.0475 2 6= 3: 1
(1,3) 1 > 3: 6.88× 10−23 1 > 3: 2.21× 10−33 1 < 3: 2.21× 10−33 1 6= 3: 1

Table 5.2:
Simulation model 1, five-class example, with p = 1000. We compare the
performance of the unified multi-class SVM [3], the proposed multi-class
classification with group structured variable selection, and the proposed
method with prescreening. CZ: number of correct zeros in the multi-class
classifier, IZ: number of incorrect zeros in the classifier.

generated for defining the class labels.

f1 = −5x1 + 5x4

f2 = 5x1 + 5x2

f3 = −5x2 + 5x3

f4 = −5x3 − 5x4

The class labels are generated according to multinomial distribution

pk(x) = P (Y = k|X = x) ∝ exp(fk(x)), k = 1, 2, 3, 4.

200 samples are generated evenly from the model for training, another 200 samples

for tunning the regularization parameter, and 40,000 samples for the test set. Similar

to the simulations in model 1, we compare 3 different methods with p = 1000. Results

are listed in Table 5.3. For larger signal to noise ratio experiment, we generate the

first four variables from Unif [−20, 20]. The performance is summarized in Table 5.4.

In simulation model 1, the informative variables are important for all the five
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method error rate number of var. CZ IZ

the ideal classifier 0 4 996 0
1. unified linear SVM 0.7489 1000 0 0
2. sparse unified SVM 0.7495 200.5 795.5 4
3. sparse unified SVM, prescreen 0.7495 242.8 753.2 4

p-values of one sided paired t-test:
method ER number of var. CZ IZ

(1,2) 1 < 2: 0.2333 1 > 2: 6.60× 10−12 1 < 2: 7.2× 10−12 1 < 2: 0
(2,3) 2 > 3: 0.3249 2 < 3: 0.1747 2 > 3: 0.1747 2 6= 3: 1
(1,3) 1 < 3: 0.1636 1 > 3: 2.34× 10−17 1 < 3: 2.58× 10−17 1 < 3: 0

Table 5.3:
Simulation model 2, four-class example, with p = 1000. We compare the
performance of the unified multi-class SVM [3], the proposed multi-class
classification with group structured variable selection, and the proposed
method with prescreening. CZ: number of correct zeros in the multi-class
classifier, IZ: number of incorrect zeros in the classifier.

method error rate number of var. CZ IZ

the ideal classifier 0 4 996 0
1. unified linear SVM 0.4609 1000 0 0
2. sparse unified SVM 0.0756 28.4 971.6 0
3. sparse unified SVM, prescreen 0.0733 27.65 972.35 0

p-values of one sided paired t-test:
method ER number of var. CZ IZ

(1,2) 1 > 2: 9.42× 10−27 1 > 2: 4.76× 10−25 1 < 2: 4.76× 10−25 1 6= 2: 1
(2,3) 2 > 3: 0.2081 2 > 3: 0.3198 2 < 3: 0.3198 2 6= 3: 1
(1,3) 1 > 3: 1.17× 10−26 1 > 3: 8.64× 10−32 1 < 3: 8.64× 10−32 1 6= 3: 1

Table 5.4:
Simulation model 2, four-class example, with p = 1000. We compare the
performance of the unified multi-class SVM [3], the proposed multi-class
classification with group structured variable selection, and the proposed
method with prescreening. CZ: number of correct zeros in the multi-class
classifier, IZ: number of incorrect zeros in the classifier.
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classes, and as dimension increases, the structured sparsity becomes important. When

p is large, the unified SVM without sparsity constraints suffers from overfitting prob-

lems. Notice that prescreening the variables by pairwise binary classifications helps

to reduce the error rate, when the noise level is relatively large. The second simu-

lation model is designed so that the informative variables are important to some of

the classes but not all. Therefore, the structured sparsity constraints that penalizes

the coefficients across classes may not perform as good as the standard unified SVM

without sparsity. However, the number of variables is greatly reduced with the sparse

classifiers. When the relative noise level decreases, the prescreening technique for

sparse SVM marginally outperforms the one without prescreening in this simulation

model. In summary, the sparse SVM outperforms the nonsparse SVM when the di-

mension is large, and the informative variables are important for all the classes. The

prescreening helps when the noise level is high. When the model does not satisfy the

group sparsity structure, it depends on the noise level to decide whether to apply the

group sparsity structure and prescreening.

5.5 Application: Learning Differential Gene Expression Sig-

natures from Personalized High Throughput Screening

Personalized medicine has become a prominent research direction as longitudinal

genomic information becomes available. For example, longitudinal gene expression

were collected and analyzed in [91, 92], in which the authors discussed the systems

biology of vaccination for yellow fever and seasonal influenza. Temporal dynamics of

host molecular responses were studied to differentiate symptomatic and asymptomatic

health status [93]. In a recently published paper by Chen et al. [94], the authors have

demonstrated the ability of personal omics profile to reavel dynamic molecular and

medical phynotypes by monitoring a single individual over 14 months. As the di-
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mension of the information available increases, for example the large number of genes

present, and the integration of genomic, trasncriptomic, proteomic, metabolomic, and

autoantibody profiles, the interpretation and accuracy of the model become new chal-

lenges to classic statistical methods. Moreover, intersubject variations can play an

important role in the fitted model when the number of subjects is limited while each

provides an information-rich profile. The former suggests the need of variable selec-

tion, and the latter points to the necessity of new techniques to eliminate irrelevant

patient variations.

This section treats an important problem of differential analysis of high dimen-

sional data generated from a serially sampled population undergoing two or more

treatments. Specifically, for a population of m subjects let yi denote the label of the

i-th subject, e.g., treatment (viral inoculation type) or outcome (symptom severity),

and let xi denote a set of molecular samples, r control samples taken at baseline

time points, and a test sample taken at some posterior time. We propose an algo-

rithm (section 5.3) for learning the best classifier of the label yi given the data xi

in the high-dimensional case where the number m of subjects is much less than the

number p of variables, e.g., gene probes on the microarray. This is a non-standard

learning problem due to the fact that the classifier is a function of both a baseline

reference sample and a test sample. Our results show significant gains in classifier

accuracy as compared to standard multi-class classification methods that do not use

a personalized reference sample.

5.5.1 Background

We conduct analysis on two H3N2 challenge studies. The H3N2 D2 challenge

study in 2008 consisted of 17 pre-screened volunteers without recent influenza-like

illness in the preceding 45 days. These subjects had samples taken 12 hours prior to

inoculation of A/Wisconsin/67/2005 (H3N2) and immediately prior to inoculation.
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Peripheral blood was taken at baseline, then at 8 hour intervals for the initial 120

hours and then 24 hours for the remaining 2 days of the study, as shown in Fig

5.2. The H3N2 D5 study in 2010 had 22 pre-screened volunteers. Subjects had a

single reference (30 hours prior to inoculation of A/Wisconsin/67/2005 (H3N2)) and

peripheral blood was taken at baseline, then at 8 hour intervals for the initial 170

hours and again at 680 hours.

Figure 5.2: H3N2 D2 challenge study

After the inoculation, subjects who never become infected are labeled uninfected

post-challenge. Chips obtained from subjects who eventually became infected are

further divided into pre-infection class, acute-infection class and post-infection class.

Viruses can not reproduce themselves outside a host cell, instead they assemble within

the infected cells. The viral replication in respiratory infection is known to occur soon

after exposure at the site of infection. Hence, viral titer measurement is a key indicator

for infection. In the challenge studies, viral titers from daily nasopharyngeal washes

were used as corroborative evidence of successful infection [93]. The onset time and

offset time are determined by the virus titer measurement for defining the boundaries

between pre-infection and acute-infection, acute-infection and post-infection classes.

Figure 5.3 shows the titration measurement for both challenge studies. The D2 study
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had measurement every 24 hours, whereas the D5 study measured twice a day. Given

the clinical labels of infected and uninfected subjects, we set the onset time for un-

infected subjects as the time point at which there was detectable virus titration, and

the offset time as the the time point at which no more virus titration is above the de-

tection level. Peripheral blood samples acquired before virus inoculation are labeled

as pre-challenge (Class1) and after inoculation, measurements from the uninfected

subjects are labeled as uninfected (Class 2). Any peripheral blood sample acquired

before the onset time from infected subjects as labeled as pre-infection (Class 3),

between onset and offset time points are the acute-infection samples (Class 4), and

after the offset time are the post-infection samples (Class 5). Additional exploration

by symptom scores and BLU [93] analysis to define the classes are shown in Figure

5.4 and 5.5 respectively. We focus on the classification problems with classes defined

by either viral titer measurement or symptom scores, because the BLU analysis was

performed on the gene expression which may lead to overfitting. Besides, the anal-

ysis procedure of viral titer takes a longer time than the gene expression microarray

analysis does, which motivates the use of titer measurement as the class labels.

It is of great interest if we can classify the different regions after inoculation, espe-

cially with feature selection to find related biomarkers. The immune system consists

of innate immune system and adaptive immune system. It will be useful if we can un-

derstand the uninfected and infected subjects in terms of gene expression to discover

gene function associated with immune properties. For example, innate immune sys-

tem is non-specific response, and there is no immunological memory, whereas adaptive

immune system usually has a time lag between exposure and response. These prop-

erties should be related the virus titration measurements and the symptoms. The

reference-based classification problem we are interested in this study is to classify

a subject’s sample by comparing it with his/her baseline samples or time 0 sam-

ples. The hypothesis is that significant gains in infection prediction performance are
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methods reference error rate number of selected genes

logistic SVM, one v.s. one w/o 0.39 12023
logistic SVM, one v.s. one w/ 0.45 12023
linear SVM, one v.s. one w/o 0.43 12023
linear SVM, one v.s. one w/ 0.47 12023
unified linear SVM w/o 0.34 12023
unified linear SVM w/ 0.38 12023

Table 5.5:
Performance of H3N2 challenge study by classic methods: classes defined
by titration. The inclusion of reference increases the data dimension, and
these classic methods without sparsity regularization suffers more from
overfitting problems as dimension increases.

possible using serial samples.

5.5.2 Approach

The model is to classify a sample into one of the three post-inoculation regions

based on virus titration measurements: the uninfected, the pre-infection and the post-

infections. We first explore the task by classic methods in Table 5.5 by analyzing data

from H3N2 D2 and D5 studies. The samples right before inoculation in H3N2 D2

and the ones obtained 30 hours prior to inoculation in H3N2 D5 are treated as the

reference samples. One subject is left out as the test set, and the rest as the training

set. The parameters for all the methods are selected by 2-fold cross validation, and

the samples are grouped by subjects, i.e., samples from the same subject should exist

in the same sets for cross validation. The experiment is conducted over each subject

as a test set, and repeated for several times to report the average performance. Given

the high-dimensional data, p = 12023, and limited number of samples or subjects, it

is easy to overfit the model. For example, we compare each method under two cases,

the one without the baseline or time 0 references and the one with the references.

Since all these methods are without sparsity constraints, the ones with reference suffer

more than the ones without references from overfitting problems as expected.
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Multi-block Group Structures To solve the overfitting problem,we apply the

multi-block multi-class classifier discussed in section 5.2. If no reference is compared

in the model, it is the case when r = 1 and when the model takes into account

the reference chips, it corresponds to r = 2. We adopt the multi-block sparsity

structure because it is of interest to identify a small number of biomarkers that can

be implemented in a device that measures the temporal evolution. Adaptive lasso

regularization is applied to this application.

Stratified Sampling The classification may suffer from the fact that the data are

imbalanced. The number of infected and uninfected subjects are about the same.

However, class 2 (uninfected region) has a lot more samples than the sub-region in

the infected subjects, i.e., the pre-infection, acute-infection and post-infection classes.

We down sample the majority classes by limiting the number of samples per class per

subject to be around 7, which is the averaged number of chips per subject in class 4.

Prescreening by Pairwise Classifications We further test the multi-block multi-

class classifier by restricting the classifiers to use the biomarkers selected in pairwise

problems. This is represented as the prescreening method in Figure 5.6. The overall

flow for each subproblem remains the same, leaving one subject out for the test set,

and performing 2-fold cross-validation to decide the regularization parameters. The

difference is that we input the selected variables found in 2 v.s. 3, 3 v.s. 4 and 2

v.s. 4 binary classifications to the multi-class classifier and restrict the classifier to

optimize over these subset of variables.

5.5.3 Results

The performance of the sparse multi-class classifier is presented in Table 5.6.

Different combinations of classes are considered in the experiments. For example,

pairwise comparison of classes 2 v.s. 3, 2 v.s. 4, 3 v.s. 4, and 4 v.s. 5, as well

85



as the 2,3,4 multi-class classification. We notice that the performance greatly im-

proved when the reference is taken into account in pairwise 2 v.s. 3 classification,

which is classifying the uninfected subjects from the pre-infection subjects. This is

generally a hard problem, since the inflammatory responses are not yet developed in

region 3. Our results on the multi-class problem of class 2,3,4 has better performance

than the classic approaches. This demonstrates the importance of the sparsity con-

straints. The results of the prescreened multi-class multi-block classification show a

30% performance gain from the one without reference, and a 36% improvement from

the multi-class with reference but without prescreening. We also present the perfor-

mance of classification when the reference is included, but treated as concatenated

data without corresponding group structure between the reference and the target,

i.e., a single block data with r = 1. In most of the classification tasks, the single

block classifiers with reference perform worse than the multi-block classifiers, or in-

clude more biomarkers than the multi-block classifiers. To understand the difficulty

and improvement of the multi-block multi-class classification, we plot the error rate

of each chip as a heatmap in Figure 5.7. The heatmaps show that the improvements

mostly arise in regrion 3, which is a consistent results if we compare it to the 2 v.s.

3 binary classification improvement.

The reason that the reference helps to improve the accuracy may be better illus-

trated by examining the solution matrix of the multi-block classifier. Take the 2,3,4

classification problem with prescreening as an example. We take the average of the

multi-block multi-class classifier solution matrix W and plot bar charts for the genes

that have been selected with 100% frequency in Figure 5.8. The bars labeled as R

represent the average of the coefficients wR = wj,k, in which R stands for the refer-

ence chip; the ones labeled as T represent the average of the coefficients wT = wj+rp,k,

in which T stands for the target chip, and k ∈ {1, 2, 3}. It is interesting to notice

that some of the genes serve as normalizing biomarkers, those are the ones that have
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the same sign in wR and wT , whereas some of them serve as contrasting biomarkers,

in which the signs in wR and wT are opposite to each other. And the contrasting

biomarkers are mostly the inflammatory genes.

Another interesting observation is that the number of selected genes increases

in binary 2 v.s. 3, 2 v.s. 4 classifications and 2,3,4 multi-class problems when the

reference is considered in the model, while the number decreases in binary 3 v.s. 4 and

4 v.s. 5 classifications when the reference is included. The classification tasks in the

former category are classifying across different subjects, i.e., no subjects has samples

in both classes simultaneously. The classifier with reference recruits a few more genes

to reduce the control the irrelevant patient variations. The tasks in the latter category

are to distinguish sub-classes in the subjects. The classifiers with references can do the

discrimination at a similar level of accuracy but with significantly fewer biomarkers.

We list the genes with high selection frequency in Table 5.7, 5.8 and 5.9. Notice

that a lot of interferon genes related to the inflammatory responses are selected, in

addition to genes associated with T cell apoptosis. In order to find early biomarkers

we arbitrarily shifted the boundaries between pre-infection and acute-infection by 2

chips, corresponding to 16 hours, earlier and reran the analysis of 3 v.s. 4 and multi-

class 2,3,4 classifications. To emphasize the boundary, larger weights are applied to

the boundary and the weights linearly decreases in time. The focus is more on feature

selection, and we list the biomarkers in the same tables. We notice a few genes with

sharper and less homogeneous expression in the acute-infection region are selected as

we apply larger weights on the boundary, such as STAT1, IRF9, TAP1 and OAS3,

see Figure 5.10.

We also apply the same comparisons on the classes defined by symptom scores.

The results are in Table 5.10 and figure 5.9. The performance is not as good as the

results based on virus titers. One of the reason may be that the symptom scores are

self reported measurements, which can be noisy. However, the inclusion of reference
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classification task reference error rate number of genes

1. class 2,3 w/o 0.26 51.79
2. class 2,3 w/ , r=2 0.17 52.69
3. class 2,3 w/ , r=1 0.22 199.76
4. class 2,4 w/o 0.11 20.39
5. class 2,4 w/ , r=2 0.12 28.04
6. class 2,4 w/ , r=1 0.13 314.53
7. class 3,4 w/o 0.18 39.67
8. class 3,4 w/ , r=2 0.16 28.25
9. class 3,4 w/ , r=1 0.16 248.92
10. class 4,5 w/o 0.22 46.89
11. class 4,5 w/ , r=2 0.23 33.72
12. class 4,5 w/ , r=1 0.21 255.19
13. class 2,3,4 w/o 0.28 52.53
14. class 2,3,4 w/ , r=2 0.29 71.16
15. class 2,3,4 w/ , r=1 0.28 394.08
16. class 2,3,4 prescreen w/o 0.26 118.76
17. class 2,3,4 prescreen w/ , r=2 0.19 119.84
18. class 2,3,4 prescreen w/ , r=1 0.25 331.22

p-values of one sided paired t-test:
method error rate number of genes

(17,16) 17 < 16: 8.40× 10−4 17 > 16: 0.4634
(17,18) 17 < 18: 9.98× 10−8 17 < 18: 8.30× 10−18

Table 5.6:
Performance of H3N2 challenge study: classes defined by titration. The
classifications with reference and r=1: the reference is taken into account,
but not treated as multi-block data, i.e., no corresponding group structure
between the corresponding variables in the reference chip and the target
chip. The classifications with reference and r=2: the reference is included,
and data is treated as a two-block classification problem. These results
show that: (1) imposing multi-block sparse structure on the classifier in-
deed gives superior performance with respect to single block structure; and
(2) the difference in performance is statistically significant as determined
by the paired t-test.
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2,3 2,3 2,4 2,4 4,5 4,5
w/o ref w/ ref w/o ref w/ ref w/o ref w/ ref
TFG IKZF1 IFI27 LY6E SLC31A1 XAF1
IGLV3-25 ZNF43 ’IFI44 IFI27 XAF1 C11orf75
DSP HSPBAP1 IFI44L PRMT2 PLAC8 IFI6
C4BPA STAG3 XAF1 HERC6 C11orf75 PSMB9
115648 at HRASLS3 HERC6 IFIT1 DPEP2 MYD88
HLA-DQA1 HMG2L1 IFIT1 HLA-DQA1 IFI35 SLC31A1
IKZF1 MSLN SIGLEC1 SCO2 SCO2 IFI35
TLK1 TNFRSF14 IRF7 IFI44 RRM2 EIF2AK2
MYOM2 LILRA3 ’MS4A4A RRM1 PARP12 RRM2
TUBB6 GFOD2 BLVRA NFATC3 EIF2AK2 DPEP2
ABCA7 PSTPIP1 ISG15 MS4A4A M97935 3 at IRF7
GM2A LYST SCO2 IKZF1 ’IRF7 PARP12
LILRB2 VPS13D IFI44L STAT1 UBE2L6
PRSS21 RRM1 IRF7 UBE2L6 M97935 3 at
PF4V1 ZNF135 OAS1 STAT1

LILRB2 ISG15
BTN3A2
HLA-DQA1
PCDHB11
SETD1A
DCTD
RHCE
GM2A
TUBB6
ZNF646
FKBP11
ARSA
NFATC3
PF4V1
C4BPA
RSRC1
UBE2W
NUBP2
PSMB1
MYOM2
PRSS21
ANK3
APOL3

Table 5.7: List of genes with selection frequency ≥ 60%

3,4 3,4 3,4 W 3,4 W 3,4 W,E 3,4 W,E
w/o ref w/ ref w/o ref w/ ref w/o ref w/ ref
IRF7 XAF1 KYNU PMEPA1 ATP9A SCO2
XAF1 EMR3 BTN2A2 GRPEL1 DHRS1 IFI44
GBP1 SERPING1 GBP1 KYNU HOOK2 TUBB2A
OAS1 SCO2 LY6E SYNGR3 DAAM2 OAS3
ICAM3 ICAM3 IFI44L XAF1 XAF1 LOC442257
HLA-DPA1 OAS1 HLA-DPA1 SCO2 ALDH9A1 DAAM2
EMR3 IFI44 IFNAR1 IFNAR1 LOC285412 REC8
SERPING1 IFI44L ISG15 GBP1 TRAF3 HAL
IFI44 IFI27 SCO2 ICAM3 C4orf27 STAT1
IFI44L LY6E IFI27 ZNF516 CYP21A2 COIL
IFI27 ISG15 KIAA0157 HLA-DPA1 SCO2 ISG15
LY6E OAS1 NEK1 ADAMTS5
ISG15 IFI44 COIL PCK2
SCO2 ISG15 TUBB2A TGM3

IFI44L LOC442257 FXYD1
IFI27 REC8 ZNF343
LY6E TAP1 IRF9

HAL PLA2G10
ADAMTS5 IFI44L
FXYD1
IRF9
ZNF343
ISG15
TGM3
STAT1
IFI44L
PCK2
PLA2G10

Table 5.8:
List of genes with selection frequency≥ 60%: W refers to the larger weights
being applied to the boundary between pre-infection (class 3) and acute-
infection (class 4); E refers to the shifting of that boundary 16 hours earlier.
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2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
W W W,E W,E prescreen prescreen

w/o ref w/ ref w/o ref w/ ref w/o ref w/ ref w/o ref w/ ref
LILRB2 IKZF1 LILRB2 NUBP2 LILRB2 NUBP2 IRF7 NUBP2
IFI27 PLAC8 IKZF1 MSLN IKZF1 IKZF1 MS4A4A IKZF1
SCO2 MS4A4A ABCA7 IKZF1 ABCA7 IRF9 PF4V1 PRSS21
IRF7 VPS13D CLEC10A PRSS21 CLEC10A PRSS21 SCO2 IFI44L
MS4A4A IRF7 PRSS21 IFI44L UTS2 IFI44L BLVRA ANK3
PF4V1 APOL3 CKB BTN3A2 PRSS21 BTN3A2 SIGLEC1 IRF7
IKZF1 NUBP2 115648 at IGLV3-25 ADAMTS5 SCAP ISG15 NFATC3
RRAS ANK3 LPAR1 ANK3 CKB C20orf91 IFIT1 OAS1
TUBA4A IFI27 GPM6A HLA-DQA1 115648 at ANK3 LILRB2 RRM1
PRSS21 ZNF43 IGLV3-25 APBA2 DSP IFI27 PRSS21 APOL3
SIGLEC1 HLA-DQA1 HLA-DQA1 IFI27 ALDH9A1 IFI35 XAF1 ISG15
APOBEC3B NFATC3 HSPA1B LY6E IGLV3-25 NFATC3 HERC6 IFI44
CKB SETD1A IFI27 NFATC3 HLA-DQA1 OAS1 GM2A MS4A4A
HLA-DQA1 MYOM2 IFNAR1 OAS1 IFI27 LAP3 ABCA7 PSMB1

SCO2 HCG26 MS4A4A MYL5 FKBP11 IKZF1 MYOM2
ISG15 LY6E FZR1 PF4V1 RSRC1 IFI44 RSRC1
HMG2L1 MICA PDZK1 PMM2 MS4A4A TUBB6 UBE2W
PRSS21 CD200 PF4V1 XAF1 PF4V1 MYOM2 C4BPA
LAMP3 PLAC8 CEP27 BLVRA FXYD1 IFI44L PF4V1
LY6E PF4V1 VPS13D C4BPA XAF1 IFI27 SCO2

LIN37 C4BPA TUBB2A C4orf27 IFIT1
ERO1LB ZNF43 TUBB6 VPS13D HLA-DQA1
C4BPA HSPBAP1 IL18RAP RRM1 ARSA
TUBA4A APOL3 MYOM2 C4BPA FKBP11
HSPBAP1 PSTPIP1 FADS2 TUBB2A ZNF646
PAQR6 MYOM2 APOBEC3B ZNF43 LY6E
TUBB6 SH3BP5 ISG15 ZNF204 IFI27
IL18RAP APOBEC3B TLK1 HSPBAP1
MYOM2 ISG15 SCO2 APOL3
APOBEC3B SETD1A IFT88
ISG15 MYOM2
ARHGEF10 APOBEC3B
TLK1 ISG15
SCO2 SETD1A

SCO2

Table 5.9:
List of genes with selection frequency≥ 80%: W refers to the larger weights
being applied to the boundary between pre-infection (class 3) and acute-
infection (class 4); E refers to the shifting of that boundary 16 hours earlier
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classification task reference error rate number of genes

class 2,3 w/o 0.36 39.78
class 2,3 w/ , r=2 0.33 43.93
class 2,4 w/o 0.47 31.19
class 2,4 w/ , r=2 0.54 34.55
class 3,4 w/o 0.24 60.29
class 3,4 w/ , r=2 0.24 41.39
class 4,5 w/o 0.25 49.56
class 4,5 w/ , r=2 0.24 33.98
class 2,3,4 w/o 0.50 58.39
class 2,3,4 w/ , r=2 0.43 72.95
class 2,3,4 prescreen w/o 0.47 116.80
class 2,3,4 prescreen w/ , r=2 0.44 145.40

Table 5.10:
Performance of H3N2 challenge study: classes defined by symptom scores.
The performance is not as good as the one with classes defined by virus
titer measurements, but the inclusion of reference improves the perfor-
mance.

leads to improvement in most of the classification tasks.

5.5.4 Discussion

We apply the reference based classification to the gene microarray data of a chal-

lenge study where serial samples were acquired from a population of subjects inoc-

ulated with live (H3N2) flu virus. While the methodology is generally applicable to

many computational bioinformatics problems, we focus on a specific problem in per-

sonalized medicine: pre-infection detection and prediction of disease outcome from

a serial assay over time of the person’s gene expression profile. The reference-based

classification problem in this application is a special case of our multi-block multi-

class classification. The references of each subject have been concatenated with the

testing samples to provide the history of the subject. The experimental results showed

significant improvement of the additional references. By quantitative comparision of

a person’s current expression profile to that observed at previous times a more accu-

rate health assessment can be made. The group sparsity penalty greatly reduces the
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number of variables and selects the important ones for the classification task. This is

particularly useful in the large p (dimension) small m (number of samples) problems,

and becomes more important when multiple references are taken into account, which

greatly increases the dimension.

The proposed method may have a lot of other applications, when the decision

should be made based on the current status of subject but also the baseline status.

The selected features may provide interesting interpretation, for example, in this ex-

periment, the selected immune genes that are closely related to the infection and

inflammatory process. This application develops a new framework for learning a clas-

sifier from a population of personalized serial samples. The power of this framework

is that the incorporation of the reference sample into the classifier significantly im-

proves classifier accuracy. The framework specifically accounts for small population

size, high dimensional classifier variables, and increased complexity of the classifier

that operates on personalized serial samples including a reference sample.

5.6 Conclusion

In reference based classification we discussed, we predict the label by using serially

or spatially diversified samples. By using such a fixed reference, irrelevant patient

variations can be controlled to enhance our ability to evaluate positive or negative

response to drug treatment, or to classify a disease based on clinical-molecular from

multiple time points or multiple tissues. As the data dimension increases, variable

selection becomes increasingly important in these problems. This is especially the case

for the serially sampled reference-based classification problem, as variable dimensions

increase linearly in the number of references. Hence it is important to understand

which variables are strongly relevant to the classification task, and how they evolve

over temporally or spatially different samples.

Variable selection in multi-block multi-class problems is more challenging than
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in binary classification. We show that parameter estimation with shrinkage can be

cast as a problem of structured variable selection, where the structure is specified

by the classes and blocks defining the sampling patterns. We have formulated the

optimization to solve the multi-class support vector machine with a mixed L1 and

L2 norm penalty. The sparsity penalty enables group variable selection over multiple

data blocks and classes. A convex optimization method is developed to solve for the

optimal classifier function and select the relevant variables simultaneously. This op-

timization is implemented by variable splitting and augmented Lagrangian methods.

We apply our algorithm to predictive health problems. The results show that the

addition of sample reference of gene microarray under normal conditions greatly im-

proves the classification by gene expression to predict the health status. Our method

is able to greatly reduce the number of features and pick out immune genes that

mediate the response to viral pathogens and are predictive of severe symptomatic

illness. We presented the necessity of structured variable selection in personalized

high throughput screening problems. The health status can be better predicted with

interpretable features by our proposed method.
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Figure 5.3:
H3N2 study titration measurements and the classes. Top two figures show
the titration measurements. Bottom two figures show the classes defined
by these measurements. The onset and offset time of detectable titration
are used to set the boundaries between class 3 and 4 and class 4 and 5
respectively.
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Figure 5.4:
H3N2 study symptom scores and the classes. Top two figures show the
sum of symptom score measurements. Bottom two figures show the classes
defined by these measurements. The onset and offset time of detectable
titration are used to set the boundaries between class 3 and 4 and class
4 and 5 respectively.
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Figure 5.5: BLU analysis on the H3N2 challenge study.

                                                     leave one subject out for the test set. 
                                                     2 fold cross-validation to select regularization parameter.                         
                                                     Report the overall performance. 
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Figure 5.6: Presreening Flow chart for classifying class 2,3, and 4.
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Figure 5.7:
The heatmaps of the error rate classifying class 2,3, and 4. The top 2
figures show the error rate of classifying without the reference, whereas the
bottom 2 figures show the results when the reference chips are included.
The performance in class 3 (pre-infection) improves when the reference is
provided. The classes are defined by virus titers.
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Figure 5.8: The solution matrix of the multi-class classifier.
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Figure 5.9:
The heatmaps of the error rate classifying class 2,3, and 4. The top 2
figures show the error rate of classifying without the reference, whereas the
bottom 2 figures show the results when the reference chips are included.
The classes are defined by symptom scores.
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Figure 5.10:
The heatmaps of the gene expression: The top 2 figures are the heatmaps
of STAT1 and the bottom 2 figures are heatmaps of TAP1. These are
examples of the genes selected when larger weights are applied to the
boundary between the pre-infection and acute-infection classes.

100



CHAPTER VI

Uneven Margin SVMs for Imbalanced Training

Samples

6.1 Introduction

Classification with imbalanced datasets is an important problem in which one or

more of the classes has many fewer training samples than the other classes. For exam-

ple, this arises when the samples from the class of interest are outnumbered by those

of the majority class. At the data preprocessing level, over-sampling the minority

class, under-sampling the majority class, or the combination of these two methods

have been proposed to solve the imbalance problem [95]. At the algorithmic level,

uneven cost and uneven margin classifiers have been studied and shown to improve

the performance [10, 11]. In this chapter we focus on the algorithmic level approaches.

Specifically we evaluate a category of algorithms, called α-calibrated classifiers, for

training binary classifiers from imbalanced samples [19]. Our experiments show that

the α-calibrated classifiers with an additional uneven margin parameter performs the

best.
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6.2 Classification with Imbalanced Data

One of the challenges in machine learning is learning to classify from from data

that have few samples from one of the classes: the so-called imbalanced training

problem. The traditional statistical learning methods are usually designed for data

that are well-balanced between the classes. However, there are many of real world

problems that do not fit into the balanced framework. For example, in data mining for

direct marketing, banks and insurance companies have large database of customers,

and they would like to discover patterns of buyers. The number of customers in the

database who have already bought the product is usually small compared to the entire

database [12]. In clinical applications, diagnosis may require detection of anomalies,

which are by definition rare events. An example is automated detection of intestinal

contractions in endoscopic video images, in which the prevalence of contractions is

very low, yielding to highly skewed training sets [13]. Text classification is another

well-known problem that requires learning from imbalanced data [10], in which the

task is assigning documents to appropriate categories. .

There are two common strategies to solve the imbalanced classification problem

that have been proposed in the current literature. One is a data level strategy that

randomly resamples the data in each class to equalize the number of samples followed

by training a standard classifier on this balanced sample. Another is an algorithm-

level strategy that uses the imbalanced sample with an adjusted classifier loss function.

6.2.1 Data-level Resampling Strategy

Data level methods are based on resampling one of the classes to produce a bal-

anced sample which can be used to train a classifier using a standard loss function.

It can be viewed as the preprocessing step. Resampling methods can be divided

into two categories: (1) of over-sampling the minority class, or (2) under-sampling

the majority class [14]. One can also consider the combination of over-sampling and
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under-sampling, performing over-sampling the minority and under-sampling the ma-

jority simultaneously [15].

6.2.2 Algorithmic-level Loss Calibration

Algorithmic level methods use the entire sample but adjust the decision threshold

or the loss function to account for imbalance. Examples are: adjusting the margin of

the Support Vector Machine(SVM)[16][10][11], applying different weights to the two

classes in logistic regression [17], developing cost-sensitive SVM [18]. An advantage

of these methods is that they do not require extra manipulation or preprocessing of

the data. These methods can usually be implemented using off-the-shelf machine

learning tools by adjusting the algorithms.

The impact of these adjustments on classifier performance is not well-studied. In

the following sections, we examine the consistency of imbalance-compensated SVM.

As the decision boundary of SVM only depends on the support vectors, one might

expect it to suffer less from imbalanced data than other classification techniques. This

is one of the reasons that SVM has been a popular technique for imbalanced learning.

6.3 Calibrated Surrogate Losses

Suppose we have a binary classification problem with feature data X ∈ Rp and

label data Y ∈ {−1, 1}. The task is to learn from the training data T = {(xi, yi)}ni=1

a prediction function f : X → R, where the decision on the value of Y is given

by sign(f). The prediction error rates are the average number of false positives

(FP) 1
2n

∑
yi=1(yi − sign(f(xi)) and the average number of false negatives (FN)

1
2n

∑
yi=−1(sign(f(xi)−yi). In the classical learning problem, the prediction function

is chosen to minimize the average prediction error rate. However, in many applica-

tions, the cost of FPs and FNs are not necessarily the same. We follow the approach

of cost-sensitive classification risk defined in [19]. Let α ∈ (0, 1) be a cost parameter.
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The α-risk is defined as

Rα(f) = EX,Y [(1− α)1{y=1}1{f(x)≤0} + α1{y=−1}1{f(x)>0}].

Let η(x) = P (Y = 1|X = x). The conditional risk is

C(η(x), f) = (1− α)η(x)1{f(x)≤0} + α(1− η(x))1{f(x)>0} (6.1)

for which the optimal decision rule becomes [19]

sign

(
η(x)(1− α)

(1− η(x))α
− 1

)
= sign(η(x)− α)

which is also known as the maximum a posteriori probability (MAP) estimate. In

even-cost classification, α = 0.5, and the optimal decision rule reduces to the standard

MAP classifier: arg max
y
{P(y|X = x)}.

In practice, as it is discontinuous, the indicator function on f(x) (6.1) is replaced

with a a smoother surrogate loss function L. Then the average loss, or risk, can be

which can be further decomposed into average partials losses L1 and L−1.

RL(f) = EX,Y [1{y=1}L1(f(x)) + 1{y=−1}L−1(f(x))]

Given properties of L, such as convexity, and or smoothness, minimizing RL is usually

easier than minimizing the average loss (6.1) [19].

The conditional L-risk is defined as

CL(η, t) = ηL1(t) + (1− η)L−1(t),

the optimal L-risk is C∗L(η) = inf
t∈R

CL(η, t) and the smallest L-risk with η < α is

C−L,α(η) = inf
t∈R:t(η−α)≤0

CL(η, t). These quantities will be important when we examine
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the consistent property of the algorithms.

Definition VI.1. The loss L is α-classification calibrated if C−L,α(η)−C∗L(η) > 0 for

all η ∈ [0, 1], η 6= α.

In other words, for all x such that η(x) 6= α, the value f(x) minimizing the

conditional L-risk will have the same sign as the optimal predictor η(x)− α . For an

α-classification calibrated L-risk, there exists an invertible, nondecreasing function

ψL,α, satisfying ψL,α(0) = 0, such that

ψL,α(Rα(f)−R∗α) ≤ RL(f)−R∗L.

This surrogate regret bound guarantees that if an algorithm is consistent for the

L-risk, it will also be consistent for the α cost-sensitive classification risk.

As mentioned in section 6.2.2, adjusting parameters in each class is a popular

solution to imbalanced learning. Uneven cost and uneven margin losses are widely

used. They can be represented as in general form by

Lα(y, t) = (1− α)1{y=1}φ(t) + α1{y=−1}βφ(−γt) (6.2)

where φ : R → [0,∞) is convex and β, γ > 0. By[19](Theorem 7), the condition

that a loss function be α-classification calibrated can be simplified for losses that are

convex and differentiable at 0. The conditions become β = 1
γ

and φ′(0) < 0 for the

loss (6.2). In Section 6.4, we compare several uneven cost, uneven margin losses that

are popular in imbalanced learning, and show that the ones satisfying α-classification

calibrated conditions result in better classification performance.
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6.4 Simulation Experiments

We compare different popular loss functions in imbalanced learning. The standard

SVM hinge loss, the hinge loss with the cost parameter tuned, the hinge loss with

the cost parameter set as the pre-defined α, and lastly the hinge loss with the cost

parameter set as α but with the margin parameter tuned. The losses are listed below

in the same order, in which α̃, ρ ∈ (0, 1).

L1(y, t) = 1{y=1}(1− t)+ + 1{y=−1}(1 + t)+

L2(y, t) = (1− α̃)1{y=1}(1− t)+ + α̃1{y=−1}(1 + t)+

L3(y, t) = (1− α)1{y=1}(1− t)+ + α1{y=−1}(1 + t)+

L4(y, t) = (1−α)
2(1−ρ)

1{y=1}(1− 2(1− ρ)t)+ + α
2ρ

1{y=−1}(1 + 2ρt)+

By the discussion in Section 6.3 calibrated surrogate losses, we know that L1 is not

α-classification calibrated (α-CC) if α 6= 1
2
; L2 is α-CC only if the tuning parameter is

α̃ set to α; L3 and L4 are both α-CC, and L4 has an additional tuning parameter. The

current algorithms for solving standard SVM or the kernelized SVM can be modified

easily to solve these problems. The details on the modification can be found in the

Appendix.

To understand the effect of tuning the parameters, we first set up an experiment,

testing each loss function on two Gaussian distributed toy examples in Fig. 6.1 and

Fig. 6.2 . The predefined cost parameter (listed as ALPHA in the figures) is set

as 0.95, Pr(Y = 1) = 0.9. The regularization parameter λ is chosen over a grid

logspace(−5, 5, 50) and the tuning α̃ and ρ are searched over [0.01 : 0.01 : 0.99].

In the first experiment shown in Fig. 6.1, the data is generated according to

µ+ = [
√

2,−
√

2], µ− = [−
√

2,+
√

2], Σ+ = Σ− = I. The optimal decision boundary

is denoted as MAP in the figure, which is the solid black line. The Classifier trained

by the loss function L2 is the green line, whereas the one trained by loss function L3 is
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the dotted black line, and the one by loss function L4 is represented as the dotted blue

line. Similarly, in the second experiment, Fig. 6.2, the data is synthesized according

to µ+ = [
√

2,−
√

2], µ− = [−
√

2,+
√

2],Σ+ = I,Σ− = 2I, with the same legend as

in Fig. 6.1. Since we are using linear classifiers in these examples, the boundaries

are straight lines, except for the optimal decision boundary in Fig. 6.2. Notice that

in both experiments, the standard SVM, using L3 as the loss function, suffers from

the imbalanced data. In particular, the decision boundary of the standard SVM is

pushed away from the optimal MAP boundary. By tuning the margin parameter

ρ correctly, one can move the decision boundary closer to the desired solid black

line/curve specifying the MAP boundary. Tuning the uneven cost parameter α may

make the performance worse, as depicted in Fig. 6.2.

6.5 Application: H3N2 Challenge Study

In this section, we illustrate the uneven margin SVM for imbalanced data in the

H3N2 predictive health problem introduced in Chapter V. Recall that in the 2 v.s.

3 problem (uninfected class v.s. pre-infection class), the majority samples are from

class 2, 347 samples from the uninfected class and 90 samples from the pre-infection

class. We downsample the majority class so that the number of chips is limited to 7

per class per subject in Chapter V to address the imbalance issue. In this section, we

compare different common approaches in the literature as in section 6.4. L1 and L3

losses are the same in this experiment, since we pick α = 0.5.

The data dimension is first reduced by ANOVA down to the order of 800, in which

the treatment is time.

xi,j,t = xi,j + µt where i = 1, ..., n , j = 1, ..., p and t represents time.

In other words, the null hypothesis is that mean is constant over time. Only those
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Figure 6.1:
The decision boundaries by training the classifiers using different loss
functions. The decision boundary trained by L4 is the one closest to the
optimal decision rule. Standard SVM with alpha=ALPHA refers to the
loss function L3; SVM with alpha tuned refers to loss function L2; SVM
with rho tuned refers to the loss function L4.
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Loss function error rate number of selected genes

1. L1 0.1945 21.54
2. L2 0.1625 57.84
3. L4 0.1556 48.89
4. downsampling 0.1831 42.00

p-values of one sided paired t-test:
method error rate number of genes

(3,1) 3 < 1: 0.0011 3 > 1: 0.0063
(3,2) 3 < 2: 0.2460 3 < 2: 0.2038
(3,4) 3 < 4: 0.0729 3 > 4: 0.3184

Table 6.1:
Performance of H3N2 challenge study. The classifier trained with uneven
margin α-CC loss function L4 performs the best in term of error rate.

variables whose mean changes over time are retained for the analysis. Since we per-

form variable selection and classification together, there is a regularization parameter

to be tunned. Due to the uneven margin parameter ρ and the uneven weight parame-

ter α̃, the parameter tunning problem becomes a cross-validation on two-dimensional

grids. We speed up the cross validation by line search: cross validation on one of the

parameters, while other parameters are fixed to the cross-validated selection in the

previous stage. Alternatively search over each parameter, until the selected parame-

ters become stable. All the classifiers are trained with reference. Results are listed in

Table 6.1.

From Table 6.1 we conclude that the classifier that minimized the average loss

function L4, which is an α-CC loss function with uneven margin performs the best.

Down sampling the majority class to balance the class sample sizes improves the

performance as compared to the standard SVM, i.e., having loss L1, but not as good

as the algorithmic approaches using loss functions L2 and L4. However, the difficulty

of algorithmic approaches is that they involve an additional tuning parameter, and

the number of parameters increases linearly as the number of classes increases. In the

H3N2 predictive health study, we have a three-dimensional parameter space to search,
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the UMSVM tunning parameter ρ or the wights α̃, the initial regularization parameter

λinit, and the adaptive regularization parameter λadapt. In theory, we can extend the

uneven margin binary SVM to multi-class SVM, but as the number of parameters

increases, it becomes impractical to search for the parameters by cross-validation.

6.6 Conclusion

We have performed several experiments with simulated and real data to explore

the benefits of loss functions that are α-classification calibrated for problems where

the number of training samples is imbalanced over the classes. We conclude that

classifiers trained by loss functions that are α-classification calibrated with uneven

margin perform better than those that are not. α-classification calibration is an

important property a classifier has to satisfy in order to be consistent for α weighted

risk. Our results suggest that tuning the margin (ρ in our notation) is better than

tuning the uneven cost (α̃ in our notation) for imbalanced problems.

A direction for future work is to more systematically explore the relation between

the degree of imbalance and the improvement from tuning the margin parameter.

This can be done by fixing the number of total samples and varying the proportion

between the classes, or by fixing the number of the minority class and varying the

number of the majority class. Another direction is to examine the consistency of

these uneven margin SVM.

6.7 Appendix 1: Kernelized Uneven Margin SVM:

The SVM with uneven margin can be formulated as the following optimization

problem

arg min
w,b,ξ

λ

2
||w||2 +

1

n

∑
(

1− α
2(1− ρ)

1{yi=1}ξi +
α

2ρ
1{yi=−1}ξi)

such that 2yi(1− ρ)wTxi ≥ 1− ξi, if yi = 1
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2yiρw
Txi ≥ 1− ξi, ifyi = −1

ξi ≥ 0

The dual form can be written as

min
a

1

2
aTQa− eTa

such that yTa = 0

0 ≤ ai ≤
1− α

2(1− ρ)nλ
, if yi = 1

0 ≤ ai ≤
α

2ρnλ
, if yi = −1

where Qij = 4yiyjk(xi, xj)(1− ρ)1+
yi+yj

2 ρ1−
yi+yj

2 , and e represents a column of ones.

Given the solution of the dual form, the decision function becomes

f(x) =
∑
i

2aiyik(xi, x)(1− ρ)
1+yi

2 ρ
1−yi

2

To solve the kernelized SVM classifier, one can use existing algorithms for uneven-

cost SVM, and simply substitute Q for the kernel matrix. If the kernel in linear,

another option is to scale each input data xi by the quantity2(1−ρ) or 2ρ, depending

ot the label yi.

6.8 Appendix 2: Consistency of Support Vector Machines

From the surrogate regret bound, we know that minimizing L-risk is sufficient for

the task of minimizing α-risk if L is α-classification calibrated. Hence, we would like to

examine the consistency of algorithms, to ensure that the L-risk will be minimized. In

[96], Steinwart provided the theory for consistency of kernelized SVM. The argument

was based on cost-insensitive classification, but it can be generalized to cost-sensitive
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learning.

Consider the optimization problem

fT,λn = arg min
f∈H

{Ω(λn, ||f ||H) +
1

n

n∑
i=1

L(yi, f(xi))} (6.3)

f̃T,λn = arg min
f∈H

{Ω(λn, ||f ||H) +
1

n

n∑
i=1

L(yi, f(xi)) + b} (6.4)

where H is a reproducing kernel Hilbert space, Ω is a regularization function and L is

the loss. Equation (6.3) and (6.4) are very similar, except for the additional offset term

in Equation (6.4). In the standard SVM, the regularization is Ω(λ, ||f ||H) = λ||f ||2H

and the loss function is the hinge loss L(y, t) = max{0, 1 − yt}. Let RL,T (fT,λn) be

the empirical risk of the decision function, and RL,P (fT,λn) be the true risk. Steinwart

showed that for the standard SVM, |RL,T (fT,λn)−RL,P (fT,λn)| → 0 in probability as

nλn →∞. In addition, for δ > 0, there exists an integer n0, such that for all n > n0,

RL,P (fT,λn) ≤ RL,P + δ. Steinwart assumed that the loss function L is admissible,

defined as

Definition VI.2. A continuous function L is called an admissible loss function if for

every η ∈ [0, 1] and tα with CL(η, tη) = min
t
CL(η, t) we have tη < 0 if η < 0.5 and

tη > 0 if η > 0.5.

The definition of admissibility VI.2 is a special case of the α-classification cali-

brated definition VI.1 with α = 0.5. In our problem with the loss function (1), and

φ(t) = max{0, 1 − t}, we can apply the concentration theory [96], since the theory

assumed the loss to be admissible, but did not use the admissible property in the

argument until proving that it suffices to minimize L-risk to minimize the Bayes

risk [96](Proposition 3.3). Indeed, the loss function (1) with α 6= 1
2

is not admissible,

meaning it is not 1
2
-classification calibrated in our terminology, thus consistency of the

algorithm does not imply consistency of the error rate. However, it is α-classification
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calibrated. If an algorithm is consistent in the error rate then the algorithm is guar-

anteed minimize the α-risk, implying consistency of the α-risk. The theorems that

support the argument are presented as follows. The statements are readjusted to

extend Steinwart’s work of proving consistency for Bayes risk to cost-sensitive α risk.

The main difference occurs when proving that approximating the minimal L-risk is

sufficient to approximately achieve the Bayes risk in Steinwart’s paper. This should

be replaced by the surrogate regret bound for α-classification calibrated loss function

to minimize the α risk, presented in section 6.3.

Let k : X×X → R be a positive semidefinite function, called a kernel, and an asso-

ciated Hilbert space (RKHS)H :=

{
n∑
i=1

αik(xi, ·) : n ∈ N,αi ∈ R, xi ∈ X, i = 1, ..., n

}
.

Define K := sup
{√

k(x, x) : x ∈ X
}

, δλ := sup {t : Ω(λ, t) ≤ L1(0) + L−1(0)}, and

Lλ := L|Y×[−δλK,δλK]. The concentration inequality stated below is based on covering

numbers. The covering number of a metric space (M,d) is difined by

N ((M,d), ε) := min{n ∈ N |x1, ..., xn : M ⊂
n⋃
i=1

B(xi, ε)}

in which B(xi, ε) represents a unit ball with center x and radius ε > 0. For conve-

nience, the logarithmic covering numbers H((M,d), ε) := lnN ((M,d), ε) is used in

the following statements.

Theorem VI.3. Let L be an α-classification calibrated (α-CC) loss function, Ω a reg-

ularization function , and k a continuous kernel on X. Then for all Borel probability

measures P on X × Y and all λ > 0, there exists an fP,λ ∈ H with

Rreg
L,P,λ(fP,λ) = inf

f∈H
Rreg
L,P,λ(f)

and ||fP,λ|| ≤ δλ.

Theorem VI.4. Let k be a universal kernel on X, L be an α-CC loss function, and
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Ω be a regularization function. Then for every Borel probability measure P on X×Y

we have

lim
λ→0

Rreg
L,P,λ(fP,λ) = RL,P .

Theorem VI.5. Let L be an α-classification calibrated (α-CC) loss function and P

a Borel probability measure on X × Y . The for all ε > 0, there exists a δ > 0 such

that for all measurable f with RL,P (f) ≤ RL,P + δ we have Rα(f) ≤ Rα + ε.

Theorem VI.6. Let L be an α-classification calibrated (α-CC) loss function, Ω a

regularization function , and k a continuous kernel on X. Then for every Borel

probability measure P on X × Y , ε > 0, λ > 0, and all n ≥ 1 we have the outer

measure of P n

Pr∗(T ∈ (X × Y )n : |RL,T (fT,λ)−RL,P (fT,λ)| ≥ ε)

≤ 2e
H(δλI,$

−1(Lλ,ε/3))− 2ε2n

9||Lλ||
2∞

in which I : H → C(X) represents the canonical embedding.

The proofs of Theorem VI.3, VI.4, and VI.6 in [96] do not use the admissible prop-

erty, and Theorem VI.5 is an extension from admissible function to α-CC function,

which is proved in [19]. By these results, the consistency theorem in [96] holds for

cost-sensitive α-risk.

Theorem VI.7. Let k be a universal kernel on X, L be an α-CC loss function, and

Ω be a regularization function. Suppose we have a positive sequence λn → 0 and

||Lλ∞||2∞
n

H(δλnI,$
−1(Lλn , ε))→ 0

for all ε > 0. Then the classifier based on equation 6.3 is universally consistent.

Similarly, the classifier with offset, based on equation 6.3, is universally consistent

if
||Lλ∞ ||2∞

n
H(I, ε

δλn |Lλn |1
)→ 0, proved in [96](Theorem 3.12).
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Figure 6.2:
The decision boundaries by training the classifiers using different loss
functions. In this example, the decision boundary trained by L4 is the
one closest to the optimal decision rule, and the one trained by L2 is worse
than the standard SVM. Standard SVM with alpha=ALPHA refers to the
loss function L3; SVM with alpha tuned refers to loss function L2; SVM
with rho tuned refers to the loss function L4.
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CHAPTER VII

Jointly Sparse Global SIMPLS

7.1 Introduction

Partial least squares (PLS) regression combines dimensionality reduction and pre-

diction using a latent variable model. It was first developed for regression analysis in

chemometrics [8], and has been successfully applied to many different areas, includ-

ing sensory science and more recently genetics [97, 98, 99, 100]. Since Partial least

squares regression (PLS-R) does not require matrix inversion or diagonalization, it

can be applied to problems with large numbers of variables. As predictor dimen-

sion increases, variable selection becomes essential to avoid over-fitting, to provide

more accurate predictors and to yield more interpretable parameters. For this reason

sparse PLS was developed by H. Chun and S. Keles [9]. The sparse PLS algorithm

performs variable selection and dimension reduction simultaneously using an L1 type

variable selection penalty. However, the L1 penalty used in [9] penalizes each variable

independently and this can result in different sets of variables being selected for each

PLS component leading to an excessively large number of variables. In this paper

we propose a global variable selection approach that penalizes the total number of

variables across all PLS components. Put another way, the proposed global penalty

guarantees that the selected variables are shared among the PLS components. This

results in improved PLS performance with fewer variables. We formulate PLS with
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joint sparsity as a variational optimization problem with objective function equal

to the univariate PLS criterion with added mixed norm sparsity constraint on the

weight matrix. The mixed norm sparsity penalty is the L1 norm of the L2 norm on

the subsets of variables used by each PLS component. A novel augmented Lagrangian

method is proposed to solve the optimization problem and soft thresholding for spar-

sity occurs naturally as part of the iterative solution. Experiment results show that

the modified PLS attains better performance (lower mean squared error, MSE) with

many fewer selected predictor variables.

7.2 Partial Least Squares Regression

Partial Least Squares (PLS) methods embrace a suite of data analysis techniques

based on algorithms belonging to the PLS family. These algorithms consist of various

extensions of the Nonlinear estimation by Iterative PArtial Least Squares (NIPALS)

algorithm that was proposed by Herman Wold [101] as an alternative algorithm for

implementing a Principal Component Analysis (PCA) [102]. The NIPALS approach

was slightly modified by Herman Wold son, Svante, and Harald Martens, in order

to obtain a regularized component based regression tool, known as PLS Regression

(PLS-R) [8, 103].

Suppose that the data consists of n samples of independent variables X ∈ Rn×p

and dependent variables (responses) Y ∈ Rn×q. In standard PLS Regression the aim is

to define orthogonal latent components in Rp, and then use such latent components

as predictors for Y in an ordinary least squares framework. The X weights used

to compute the latent components can be specified by using iterative algorithms

belong to the NIPALS family or by a sequence of eigen-decompositions. The general

underlying model is X = TP ′+E and Y = TQ′+F , where T is the latent component

matrix, P and Q are the loading matrices, E and F are the residual terms.
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7.2.1 Univariate response

We assume, without loss of generality, that all the variables have been centered in

a pre-processing step. For univariate Y , i.e q = 1, PLS Regression, also often denoted

as PLS1, successively finds X weights R = [ r1 r2 ... rK ] as the solution to the

constrained optimization

rk = arg max
r
{r′X ′(k−1)Yk−1Y

′
k−1X(k−1)r}

s.t. r′r = 1

(7.1)

where X(k−1) is the matrix of the residuals (i.e., the deflated matrix) from the regres-

sion of the X-variables on the first k− 1 latent components, and X0 = X. Due to the

deflation on data after each iteration for finding the weight vector rk, the orthogo-

nality constraint is satisfied by construction. These weights are then used to find the

orthogonal latent components T = X(k−1)R. Such components can be also expressed

in terms of original variables (instead of deflated variables), i.e., as T = XW , where

W is the matrix containing the weights to be applied to the original variables in order

to exactly obtain the latent components [104].

For a fixed number of components, the response variable Y is predicted in an

ordinary least squares regression model where the latent components play the role of

the exogenous variables,

arg min
Q
{||Y − TQ′||2} = (T ′T )−1T ′Y.

This provides the regression coefficients β̂PLS = WQ̂′ for the model Y = XβPLS +F .

Depending on the number of selected latent components the length ‖β̂PLS‖2 of

the vector of the PLS coefficient estimators changes. In particular, de Jong [105]

has shown that the sequence of these coefficient vectors have lengths that are strictly

increasing as the number of component increases. This sequence converges to the
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ordinary least squares coefficient vector and the maximum number of latent compo-

nents obtainable equals the rank of the X matrix. Thus, by using a number of latent

components K < rank(X), PLS-R performs a dimension reduction by shrinking the

X matrix. Hence, PLS-R is a suitable tool for problems with data containing many

more variables p than observations n.

The objective function in (7.1) can be interpreted as maximizing the squared co-

variance between Y and the latent component: corr2(Y,Xk−1rk)var(Xk−1rk). Because

the response Y has been taken into account to formulate the latent matrix, PLS usu-

ally has better performance in prediction problems than principle component analysis

(PCA) does. This is one of the main difference between PLS and principle component

analysis (PCA) [106].
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Figure 7.1:
A comparison between PCA and PLS: Suppose the response variable is
generated to be linear with X2. The components found by PCA and PLS
differ because PLS takes into account the response variables.

7.2.2 Multivariate response

Similarly to univariate response PLS-R, multivariate response PLS-R selects latent

components in Rp and Rq , i.e., tk and vk, such that the covariance between tk and

vk is maximized. For a specific component, the sets of weights rk ∈ Rp and ck ∈ Rq
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are obtained by solving

max{t′v} = max{r′X ′k−1Yk−1c}

s.t. r′r = c′c = 1

(7.2)

where tk = X(k−1)rk, vk = Y(k−1)ck, and X(k−1) and Y(k−1) are the deflated matrices

associated to X and Y . Notice that the optimal solution ck should be proportional

to Y ′k−1Xk−1rk. Therefore, the optimization in (7.2) is equivalent to

max
r
{r′X ′k−1Yk−1Y

′
k−1Xk−1r}

s.t. r′r = 1.

(7.3)

For each component, the solution to this criterion can be obtained by using a so

called PLS2 algorithm. A detailed description of the iterative algorithm as presented

by Höskuldsson is in Algorithm 16 [107].

Algorithm 6: PLS2 algorithm

1 for k=1:K do
2 initialize r
3 X = Xnew

4 Y = Ynew
5 while solution has not converged do
6 t = Xr
7 c = Y ′t
8 Scale c to length 1
9 v = Y c

10 r = X ′v
11 Scale r to length 1

12 loading vector p = X ′t/(t′t)
13 deflate Xnew = X − tp′

14 regression b = Y ′t/(t′t)
15 deflate Ynew = Y − tb′

16 rk = r

In 1993 de Jong proposed a variant of the PLS2 algorithm, called Statistically
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Inspired Modification of PLS (SIMPLS), which calculates the PLS latent components

directly as linear combinations of the original variables [108]. The SIMPLS was first

developed as an optimality problem and solve the optimization

wk = arg max
w

(w′X ′Y Y ′Xw)

s.t. w′w = 1, w′X ′Xwj = 0 for j = 1, ..., k − 1.

(7.4)

Ter Braak and de Jong [109] provided a detailed comparison between the objective

functions for PLS2 in (7.3) and SIMPLS in (7.4) and shown that the successive

weight vectors wk can be derived either from the deflated data matrices or original

variables in PLS2 and SIMPLS respectively. Let W+ be the Moore-Penrose inverse

of W = [w1 w2 ... wk−1]. The PLS2 algorithm (Algorithm 16) is equivalent to solving

the optimization

wk = arg max
w

(w′X ′Y Y ′Xw)

s.t. w′(I −WW+)w = 1,w′X ′Xwi = 0 for i = 1, ..., k − 1.

Both NIPALS and SIMPLS have the same objective function but each are maxi-

mized under different constraints. NIPALS and SIMPLS are equivalent when Y is

univariate, but provide slightly different weight vectors in multivariate scenarios. The

performance depends on the nature of the data, but SIMPLS appears easier to inter-

pret since it does not involve deflation of the data sets [108]. We develop our globally

sparse PLS based on the SIMPLS optimization formulation.

7.3 Mix Norm Relaxation of Subset Selection

One approach to sparse PLS is to add the L1 norm of the weight vector, a sparsity

inducing penalty, to (7.4). The solution for the first component would be obtained
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by solving

w1 = arg max
w

(w′X ′Y Y ′Xw) s.t. w′w = 1, ||w||1 ≤ λ. (7.5)

The addition of the L1 norm is similar to SCOTLASS (simplified component lasso

technique), the sparse PCA proposed by Jolliffe [110]. However, the solution of SCOT-

LASS is not sufficiently sparse, and the same issue remains in (7.5). Chun and Keles

[9] reformulated the problem, promoting the exact zero property by imposing the L1

penalty on a surrogate of the weight vector instead of the original weight vector [9].

For the first component, they solve the following optimization by alternating between

updating w and z (block coordinate descent).

w1, z1 = arg min
w,z

{−κw′X ′Y Y ′Xw+(1−κ)(z−w)′X ′Y Y ′X(z−w)+λ1||z||1+λ2||z||22}

s.t. w′w = 1

As mentioned in the Introduction, this formulation penalizes the variables in each PLS

component independently. This thesis proposes an alternative in which variables are

penalized simultaneously over all directions. First, we define the global weight matrix,

consisting of the K weight vectors, as

W =


|

w1

|

|

w2

|

· · ·

|

wK

|

 =



− w′(1) −

− w′(2) −
...

− w′(p) −


.

Notice that the elements in a particular row of W, i.e., w′(j), are all associated with the

same predictor variable xj. Therefore, rows of zeros correspond to variables that are

not selected. To illustrate the drawbacks of penalizing each variable independently,

as in [9], suppose that each entry in W is selected independently with probability
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p1. The probability that the (j)th variable is not selected becomes (1 − p1)K , and

the probability that all the variables are selected for at least one weight vector is

[1 − (1 − p1)K ]p, which increases as the number of weight vectors K increases. This

suggests that for large K the local variable selection approach of [9] may not lead to an

overall sparse and parsimonious PLS model. In such cases a group sparsity constraint

is necessary to limit the number of selected variables. The jointly sparse global

SIMPLS variable selection problem is to find the top K weight vectors that best relate

X to Y, while using limited number of variables. This is a subset selection problem

that is equivalent to adding a constraint on the L0 norm of the vector consisting of

any norm of each row in W . In other words, counting the number of nonzero rows in

W . This leads to the optimization problem

W = arg min
W

− 1

n2

K∑
k=1

w′kX
′Y Y ′Xwk

s.t. ||$||0 ≤ t, w′kwk = 1 ∀ k, and w′kX
′Xwi = 0 ∀ i 6= k

(7.6)

in which

$ =



||w(1)||2

||w(2)||2
...

||w(p)||2


.

The objective function (7.6) is the summation of the first K terms in the SIM-

PLS objective, which we refer to as global SIMPLS. Instead of the sequential greedy

solution in PLS2 algorithm, the proposed jointly sparse global SIMPLS must solve

for the K weight vectors simultaneously. Given the complexity of this combinatorial

problem, as is standard optimization practice, we relax the L0 norm optimization to
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a mixed norm structured sparsity penalty [111].

W = arg min
W

− 1

n2

K∑
k=1

w′kX
′Y Y ′Xwk + λ

p∑
j=1

||w(j)||2

s.t. w′kwk = 1 ∀ k and w′kX
′Xwi = 0 ∀ i 6= k

(7.7)

The L2 norm of each row of W promotes grouping entries in W that relate to the

same predictor variable, whereas the L1 norm promotes a small number of groups, as

in (7.5).

Suppose we rotate the independent variables by a rotation matrix Rx and the

response variables by a rotation matrix Ry. The optimization becomes

W = arg min
W

− 1

n2

K∑
k=1

w′k(XRx)
′(Y Ry)(Y Ry)

′(XRx)wk + λ

p∑
j=1

||w(j)||2

= arg min
W

− 1

n2

K∑
k=1

w′kR
′
xX
′Y Y ′XRxwk + λ

p∑
j=1

||w(j)||2

s.t. w′kwk = 1 ∀ k and w′k(XRx)
′(XRx)wi = w′kR

′
xX
′XRxwi = 0 ∀ i 6= k.

(7.8)

Since we do not impose sparsity constraints on the response variables, the response

variables are invariant to rotation, whereas the independent variables are.

7.4 Algorithmic Implementation for jointly sparse Global SIM-

PLS

Constrained eigen-decomposition and group variable selection are each well-studied

problems for which efficient algorithms have been developed. We propose to solve the

optimization (7.7) by augmented Lagrangian methods, which allows one to solve (7.7)

by variable splitting iterations. Augmented Lagrangian methods introduce a new vari-

able M , constrained such that M = W , such that the row vectors m(j) of M obey
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the same structural pattern as the rows of W :

min
W,M
− 1

n2

K∑
k=1

w′kX
′Y Y ′Xwk + λ

p∑
j=1

||m(j)||2

s.t. w′kwk = 1 ∀ k , w′kX
′Xwi = 0 ∀ i 6= k, and M = W

(7.9)

The optimization (7.9) can be solved by replacing the constrained problem by an

unconstrained one with an additional penalty on the Frobenius norm of the difference

M −W . This penalized optimization can be iteratively solved by a block coordinate

descent method that alternates between optimizing over W and over M (See algorithm

6). We initialize the algorithm 6 with M(0) equals to the solution of standard PLS,

and D(0) equals to the zero matrix. Once the algorithm converges, the final PLS

regression coefficients are obtained by applying the standard PLS regression on the

selected variables keeping the same number of components K. The optimization over

W can be further simplified to a secular equation problem, whereas the optimization

over M can be shown to reduce to solving a soft thresholding operation. As described

later in the experimental comparisons section, the parameters λ and K are decided

by cross validation.

Algorithm 7: Algorithm for solving the global SIMPLS with variable selection
problem using the augmented Lagrangian method

1 set τ = 0, choose µ > 0, M(0), W (0), D(0);
2 while stopping criterion is not satisfied do

3 W (τ + 1) = arg min
W

− 1
n2

K∑
k=1

w′kX
′Y Y ′Xwk + µ

2
||W −M(τ)−D(τ)||2F

4 s.t. w′kwk = 1 ∀k, w′kX
′Xwi = 0 ∀ i 6= k;

5 M(τ + 1) = arg min
M

λ
p∑
j=1

||m(j)||2+µ
2
||W (τ + 1)−M −D(τ)||2F ;

6 D(τ + 1) = D(τ)−W (τ + 1) +M(τ + 1);

Optimization over W The following optimization in algorithm 6 is a nonconvex

quadratically constrained quadratic program (QCQP). The nonconvexity is mainly
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due to the equality constraints.

W (τ + 1) = arg min
W

− 1

n2

K∑
k=1

w′kX
′Y Y ′Xwk +

µ

2
||W −M(τ)−D(τ)||2F

s.t. w′kwk = 1 ∀k, w′kX
′Xwi = 0 ∀ i 6= k

We propose solving for the K vectors in W successively by a greedy approach.

Let mk and dk be the columns of the matrices M and D, and ωk = mk + dk. The

optimization over W becomes

wk(τ + 1) = arg min
w

− 1

n2
w′X ′Y Y ′Xw +

µ

2
||w − ωk||22

s.t. w′w = 1, w′X ′Xwi = 0 ∀ i < k.

(7.10)

Let N be an orthonormal basis for the orthogonal complement of {X ′Xwi}, i < k.

The optimization (7.10) can be solved by the method of Lagrange multipliers. The

solution is wk = N(A− αI)−1b, in which A = − 1
n2N

′X ′Y Y ′XN , b = µ
2
N ′ωk and α

is the minimum solution that satisfies b′(A− αI)−2b = 1. To see this, let w = Nw̃.

The optimization (7.10) can be written as

min w̃′Aw̃ − 2b′w̃ s.t. w̃′w̃ = 1.

Since we assume that w is a linear combination of the basis vectors in N, the or-

thogonality conditions in (7.10) are automatically satisfied. Hence these conditions

have been dropped in the new formulation. Then using Lagrange multipliers, we can

show that the solution as stated above. Suppose there are two solutions of α that

satisfy b′(A−αI)−2b = 1, corresponding to two pairs of solutions to the optimization,

(w̃1, α1) and (w̃2, α2). It can be shown that

(w̃′1Aw̃1 − 2b′w̃1)− (w̃′2Aw̃2 − 2b′w̃2) =
α1 − α2

2
||w̃1 − w̃2||22.
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Hence, one should select the minimum among all the α’s.

The equation b′(A− αI)−2b = 1 is a secular equation, a well studied problem in

constrained eigenvalue decomposition [112][113]. We can diagonalize the matrix A as

A = UDU ′, in which D is diagonal with eigenvalues d1, d2, ..., dpin decreasing order

on the diagonal, and the columns of U are the corresponding eigenvectors. Define

g(α) = b′(A− αI)−2b = b′U



1
(d1−α)2

1
(d2−α)2

. . .

1
(dp−α)2


U ′b.

Let b̃ = U ′b, then g(α) = b′(A−αI)−2b =
∑
i

b̃2i
(di−α)2

, and hence g(α) = 1 is a secular

equation. g(α) increases strictly as α increases from −∞ to dp, since

g′(α) =
∑
i

2b̃2
i

(di − α)3

is positive for −∞ < α < dp. Moreover, given the limits

lim
α→−∞

g(α) = 0

lim
α→d−p

g(α) =∞

we can conclude that there is exactly one solution α < dp to the equation g(α) = 1,

[112]. An iterative algorithm (algorithm 3 ) is used to solve g(α) = 1 starting from a

point to the left of the smallest eigenvalue dp [113].

Algorithm 8: iteration for solving secular equation

1 set τ = 0, choose α0 = dp − ε1;
2 while stopping criterion is not satisfied, |g(ατ )− 1| > ε2 do

3 ατ+1 = ατ + 2 g−1/2(ατ )−1

g−3/2(ατ )g′(ατ )
;
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Optimization over M The optimization over M has a closed form solution. Let

∆ = W (τ + 1)−D(τ), then each row of M is given as m(j) = [||δ(j)|| − λ
µ
]+

δ(j)
||δ(j)||

.

7.5 Simulation Experiments

We implement the simulation models in [9]. There are four models all following

Y = Xβ + f , n = 100, and p = 5000. We compare five different methods: the stan-

dard PLS-R, PLS generalized linear regression proposed by Bastien et al. [114], L1

penalized PLS-R [9], Lasso [84] and the jointly sparse global SIMPLS-R (or denoted

as L1/L2 SPLS in the performance comparison tables). All the methods select the

parameters by ten fold cross-validation, except for the PLS generalized linear regres-

sion, which stops to include an additional component if the new component is not

significant. Two i.i.d sets are generated for each trial: one as the training set and

one as the test set. Ten trials are conducted for each model, and averaged results are

listed in Table 7.1, 7.2, 7.3, and 7.4. The details of the models are as follows:

model 1

H1j =

 3 1 ≤ j ≤ 50

4 51 ≤ j ≤ n

H2j = 3.5

Xi =

 H1 + εi 1 ≤ i ≤ 50

H2 + εi 51 ≤ i ≤ p

β =


1
25

1 ≤ i ≤ 50

0 51 ≤ i ≤ p

εi is N(0, In) distributed, and f is N(0, 1.52In) distributed.
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model 2

H1j = 3I(j ≤ 50) + 4I(j > 50)

H2j = 3.5 + 1.5I(u1j ≤ 0.4)

H3j = 3.5 + 0.5I(u2j ≤ 0.7)

H4j = 3.5− 1.5I(u3j ≤ 0.3)

H5j = 3.5

u1j, u2j, u3j are i.i.d from Unif(0, 1)

Xi = Hj + εi, nj−1 ≤ i ≤ nj, j = 1, ..., 5, (n0, ..., n5) = (0, 50, 100, 200, 300, p)

β =


1
25

1 ≤ i ≤ 50

0 51 ≤ i ≤ p

εi is N(0, In) distributed, and f is N(0, 1.52In) distributed.

model 3

H1j = 2.5I(j ≤ 50) + 4I(j > 50)

H2j = 2.5I(1 ≤ j ≤ 25, 51 ≤ j ≤ 75) + 4I(26 ≤ j ≤ 50, 76 ≤ j ≤ 100)

H3j = 3.5 + 1.5I(u1j ≤ 0.4)

H4j = 3.5 + 0.5I(u2j ≤ 0.7)

H5j = 3.5− 1.5I(u3j ≤ 0.3)

H6j = 3.5

u1j, u2j, u3j are i.i.d from Unif(0, 1)

Xi = Hj + εi, nj−1 ≤ i ≤ nj, j = 1, ..., 5, (n0, ..., n6) = (0, 25, 50, 100, 200, 300, p)

β =


1
25

1 ≤ i ≤ 50

0 51 ≤ i ≤ p

εi is N(0, In) distributed, and f is N(0, In) distributed.
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model 4

H1j = I(j ≤ 50) + 6I(j > 50)

H2j = 3.5 + 1.5I(u1j ≤ 0.4)

H3j = 3.5 + 0.5I(u2j ≤ 0.7)

H4j = 3.5− 1.5I(u3j ≤ 0.3)

H5j = 3.5

u1j, u2j, u3j are i.i.d from Unif(0, 1)

X = (X(1), X(2))

X(1) is generated from N(0,Σ), Σ is from AR(1) with ρ = 0.9.

X
(2)
i = Hj + εi, nj−1 ≤ i ≤ nj, j = 1, ..., 5, (n0, ..., n5) = (0, 50, 100, 200, 300, p− 50)

βi = kj for nj−1 + 1 ≤ i ≤ nj, j = 1, ..., 6, where

(n0, ..., n6) = (0, 10, 20, 30, 40, 50, p), (k1, ..., k6) = (8, 6, 4, 2, 1, 0)/25

εi is N(0, In) distributed, and f is N(0, 1.52In) distributed.

In most of the simulations, we observe that the proposed jointly sparse globel

SIMPLS-R performs the best in most cases in terms of the prediction MSE. In par-

ticular, the number of variables and the number of components chosen in jointly sparse

global SiMPLS-R are usually less than the L1 SPLS method. The cross validation

time for globally sparse PLS is long, searching over a two-dimensional grids of the

number of components and the regularization parameter. However, the performance

improves.

7.6 Application 1: Chemometrics

In this section we show experimental results obtained by comparing standard

PLS-R, L1 penalized PLS-R [9] (denoted as L1 SPLS in the performance table), our

proposed jointly sparse global SIMPLS-R (denoted as L1/L2 SPLS in the perfor-

mance table), and Correlated Component Regression [115]. All the methods have
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Model 1: 1. PLS-R 2. Bastien 3. L1 SPLS 4. Lasso 5. L1/L2 SPLS

number of comp. 1.4 5 1.9 NaN 1.4

number of variables 5000 1129.4 246.5 40.7 276.1

R2 0.98 1 0.71 0.59 0.83

MSE 3.14 2.98 3.00 3.23 2.82

Time CV 101.47 0 43.49 51.59 11414

Time analysis 0.89 121.91 0.05 0.04 6.40

Time prediction 0.010 0.011 0.002 0.04 0.002

Total time 102.37 121.92 43.54 51.67 11420

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(5,1) 5 6= 1: 0.5 5 < 1: 1.84× 10−11 5 < 1: 0.01
(5,2) 5 < 2: 4.49× 10−7 5 < 2: 5.46× 10−5 5 < 2: 0.043
(5,3) 5 < 3: 0.19 5 > 3: 0.35 5 < 3: 0.075
(5,4) NaN 5 > 4: 0.053 5 < 4: 0.006

Table 7.1: Simulation Model 1.

Model 2: 1. PLS-R 2. Bastien 3. L1 SPLS 4. Lasso 5. L1/L2 SPLS

number of comp. 2 5 2.3 NaN 1.1

number of variables 5000 1158.4 273.4 15.8 171.7

R2 0.98 1 0.79 0.39 0.75

MSE 3.18 2.99 2.93 3.09 2.69

Time CV 100.51 0 43.03 53.97 11420

Time analysis 1.28 122.69 0.06 0.04 5.72

Time prediction 0.010 0.011 0.002 0.039 0.001

Total time 101.80 122.70 43.09 54.05 11426

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(5,1) 5 < 1: 0.0671 5 < 1: 1.13× 10−14 5 < 1: 8.69× 10−4

(5,2) 5 < 2: 1.19× 10−11 5 < 2: 6.91× 10−9 5 < 2: 0.0046
(5,3) 5 < 3: 0.0184 5 < 3: 0.1041 5 < 3: 0.0344
(5,4) NaN 5 > 4: 0.0119 5 < 4: 2.70× 10−4

Table 7.2: Simulation Model 2.
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Model 3: 1. PLS-R 2. Bastien 3. L1 SPLS 4. Lasso 5. L1/L2 SPLS

number of comp. 1.4 5 1.4 NaN 1.5

number of variables 5000 1156.4 89.2 41.3 60.5

R2 0.98 1 0.77 0.75 0.73

MSE 1.82 1.48 1.27 1.48 1.25

Time CV 102.61 0 43.84 49.45 11295

Time analysis 1.03 126.08 0.04 0.04 5.48

Time prediction 0.01 0.01 0.001 0.039 0.001

Total time 103.65 126.09 43.88 49.53 11300

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(5,1) 5 > 1: 0.4201 5 < 1: 2.32× 10−19 5 < 1: 1.18× 10−4

(5,2) 5 < 2: 5.53× 10−6 5 < 2: 1.39× 10−12 5 < 2: 0.0104
(5,3) 5 > 3: 0.3632 5 < 3: 0.1697 5 < 3: 0.3430
(5,4) NaN 5 > 4: 0.1726 5 < 4: 0.0054

Table 7.3: Simulation Model 3.

Model 4: 1. PLS-R 2. Bastien 3. L1 SPLS 4. Lasso 5. L1/L2 SPLS

number of comp. 2 5 2.6 NaN 2.1

number of variables 5000 1118.8 1260.8 9.4 1180.5

R2 1 1 0.78 0.19 0.91

MSE 2.15 2.29 2.41 2.14 2.36

Time CV 98.16 0 44.31 50.52 12051

Time analysis 1.55 123.79 0.10 0.04 7.97

Time prediction 0.010 0.011 0.007 0.042 0.004

Total time 99.73 123.8 44.41 50.60 12059

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(5,1) 5 > 1: 0.4057 5 < 1: 9.62× 10−5 5 > 1: 0.0087
(5,2) 5 < 2: 6.82× 10−5 5 > 2: 0.4618 5 > 2: 0.1874
(5,3) 5 < 3: 0.2201 5 < 3: 0.3918 5 < 3: 0.3812
(5,4) NaN 5 > 4: 0.0485 5 > 4: 0.0056

Table 7.4: Simulation Model 4.
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been applied on the Octane data set (see [104]). The Octane data is a real data

set consisting of 39 gasoline samples for which the digitized Octane spectra have

been recorded at 225 wavelengths (in nm). The aim is to predict the Octane num-

ber, a key measurement of the physical properties of gasoline, using the spectra as

predictors. This is of major interest in real applications, because the conventional

procedure to calculate the Octane number is time consuming and involves expensive

and maintenance-intensive equipment as well as skilled labor.

The experiments are composed of 150 trials. In each trial we randomly split the 39

samples into 26 training samples and 13 test samples. The regularization parameter

λ and number of components K are selected by 2-fold cross validation on the training

set, while µ is fixed to 2000. The averaged results over the 150 trials are shown in

Table 7.5. All the methods but CCR perform reasonably in terms of MSE on the test

set. We further show the variable selection frequencies for the first three PLS methods

over the 150 trials superimposed on the octane data in Fig. 7.2. In chemometrics, the

rule of thumb is to look for variables that have large amplitudes in first derivatives

with respect to wavelength. Notice that both L1 penalized PLS-R and jointly sparse

global SIMPLS have selected variables around 1200 and 1350 nm, and the selected

region in the latter case is more confined. Box and Whisker plots for comparing the

MSE, number of selected variables, and number of components of these three PLS

formulations are shown in Fig. 7.3. Comparing our proposed jointly sparse global

SIMPLS with standard PLS and L1 penalized PLS [9], we see that global SIMPLS

with joint variable selection attains better performance in terms of MSE, the number

of predictors, and the number of components.

7.7 Application 2: Predictive Health Study

In this section we apply the jointly sparse global SIMPLS-R to 3 predictive health

challenge studies. The H3N2 challenge study introduced in Chapter V, and an-
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Table 7.5:
Performance of the global SIMPLS with joint variable selection compared
with standard PLS, L1 penalized PLS and CCR.

methods MSE number of var. number of comp.

PLS-R 0.0564 225 5.5

L1 SPLS 0.0509 87.3 4.5

L1/L2 SPLS 0.0481 38.5 3.8

CCR 0.8284 19.1 6

Figure 7.2:
Variable selection frequency superimposed on the octane data: The hight
of the surfaces represents the exact value of the data over 225 variables
for the 39 samples. The color of the surface shows the selection frequency
of the variables as depicted on the colorbar.

other two: H1N1 and HRV studies. The H1N1 D3 challenge study consisted of 24

pre-screened volunteers without recent influenza-like illness in the preceding 45 days.

These subjects had samples taken 24 hours prior to inoculation of A/Brisbane/59/2007
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Figure 7.3:
The Box and Whisker plot for comparing MSE, and number of selected
variables, and number of components on the test samples.

(H1N1) and immediately prior to inoculation. Peripheral blood was taken at base-

line, then at 8 hour intervals until 108 hours after inoculation. The H1N1 D4 had

19 pre-screened volunteers. Subjects had two references (29 and 5 hours prior to

inoculation of A/Brisbane/59/2007 (H1N1)) then sampled at 8 hour intervals for the

initial 142 hours and again at 165 hours. The H1N1 UVA challenge study consisted

of 20 pre-screened volunteers without recent influenza-like illness in the preceding 45
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days. These subjects had samples taken 12 hours prior to inoculation of HRV and

immediately prior to inoculation. Peripheral blood was taken at baseline, then at 4

to 6 hour intervals until 36 hours after inoculation and again at the 3rd and 4th day.

The HRV DUKE study had 30 pre-screened volunteers. Subjects had two references

as the UVA study then sampled at 4 to 6 hour intervals for the initial 48 hours and

then 12 hour intervals unitl 132 hours.

The prediction task in these experiments is to predict the symptom scores based

on gene expression. The symptoms are self-reported scores, ranging from 0 to 3.

We compare the jointly sparse global SIMPLS-R with standard PLS by leaving one

subject out as the test set, and the rest as the training set. The process is repeated

until all subjects have been treated as the test set. The number of components for

both methods and the regularization parameter in jointly sparse global SIMPLS-R

are selected by 2-fold cross validation. Since each subject has multiple samples, we

perform the cross validation by splitting by subjects, i.e., no samples from the same

subject will appear in both training and tunning sets. The results for H3N2 are listed

in Table 7.6 and 7.7. We further restrict the responses to the first 3 symptoms, which

are the upper respiratory symptoms in Table 7.8 and 7.9. We notice that restricting

the responses to the upper respiratory symptoms improves the performances. The

reason may be that these viruses are more closely related to the upper respiratory

symptoms than the others. Results on H1N1, HRV UVA, HRV DUKE are listed in

Table 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, 7.19, 7.19, 7.20, and 7.21. In most

of the cases, the jointly sparse global SIMPLS-R outperforms the standard PLS-R in

terms of prediction MSE, number of components, number of genes.

7.8 Application 3: Agriculture

This application studies the relationship between the wine and growing conditions

[116], in which a set of 27 wines from the same chateau (cheval blanc) but made from
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1. PLS 2. SPLS

number of comp. 1.97 1.29
number of genes 12023 57.29
Overall MSE 1.72 1.66

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 7.66× 10−4 1 > 2: 8.78× 10−15 1 > 2: 0.0070

Table 7.6:
Overall performance of PLS and jointly sparse global SIMPLS applied to
10 H3N2 symptoms scores and gene expression.

PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.14 0.14 0.41 0.39 0.38 0.40

Stuffy nose 0.26 0.25 0.50 0.47 0.34 0.36

Sneezing 0.17 0.17 0.38 0.37 0.32 0.34

Sore throat 0.22 0.22 0.14 0.14 0.06 0.05

Earache 0.03 0.03 0.10 0.11 0.19 0.19

Malaise 0.27 0.26 0.30 0.35 0.22 0.22

Cough 0.16 0.15 0.10 0.10 0.05 0.04

Short. of breaths 0.10 0.10 0.15 0.17 0.15 0.15

Headache 0.24 0.22 0.40 0.40 0.29 0.31

Myalgia 0.13 0.12 0.31 0.32 0.32 0.35

Table 7.7:
Performance of PLS and jointly sparse global SIMPLS applied to 10 H3N2
symptoms scores and gene expression. Wy represents the averaged L1

norm of the response weight vector. R2 represents the R square value on
the training set.

1. PLS 2. SPLS

number of comp. 4.95 4.79
number of genes 12023 246.63
Overall MSE 0.54 0.49

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 0.0416 1 > 2: 2.14× 10−14 1 > 2: 0.0099

Table 7.8:
Overall performance of PLS and jointly sparse global SIMPLS applied to
3 H3N2 symptoms scores and gene expression.
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PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.13 0.12 0.53 0.47 0.59 0.60
Stuffy nose 0.24 0.23 0.67 0.71 0.54 0.59
Sneezing 0.16 0.14 0.52 0.48 0.50 0.56

Table 7.9:
Performance of PLS and jointly sparse global SIMPLS applied to 3 H3N2
symptoms scores and gene expression. Wy represents the averaged L1

norm of the response weight vector. R2 represents the R square value on
the training set.

1. PLS 2. SPLS

number of comp. 4.98 4.95
number of genes 12023 256.63
Overall MSE 0.97 1.02

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 0.2849 1 > 2: 2.95× 10−130 1 < 2: 0.0019

Table 7.10:
Overall performance of PLS and jointly sparse global SIMPLS applied to
10 H1N1 symptoms scores and gene expression.

PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.16 0.18 0.34 0.44 0.31 0.41

Stuffy nose 0.18 0.20 0.59 0.49 0.56 0.53

Sneezing 0.09 0.10 0.31 0.28 0.37 0.39

Sore throat 0.09 0.09 0.18 0.14 0.19 0.20

Earache 0.04 0.04 0.13 0.12 0.19 0.18

Malaise 0.10 0.10 0.24 0.23 0.26 0.26

Cough 0.03 0.04 0.11 0.10 0.17 0.15

Short. of breaths 0.01 0.01 0.05 0.06 0.14 0.15

Headache 0.15 0.15 0.37 0.36 0.42 0.39

Myalgia 0.11 0.12 0.32 0.32 0.43 0.41

Table 7.11:
Performance of PLS and jointly sparse global SIMPLS applied to 10 H1N1
symptoms scores and gene expression. Wy represents the averaged L1

norm of the response weight vector. R2 represents the R square value on
the training set.
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1. PLS 2. SPLS

number of comp. 5 4.95
number of genes 12023 105.68
Overall MSE (sum of MSEs) 0.47 0.54

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 0.08 1 > 2: 6.33× 10−146 1 < 2: 1.19× 10−6

Table 7.12:
Overall performance of PLS and jointly sparse global SIMPLS applied to
3 H1N1 symptoms scores and gene expression.

PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.18 0.20 0.50 0.58 0.38 0.42
Stuffy nose 0.20 0.24 0.74 0.62 0.62 0.49
Sneezing 0.10 0.11 0.41 0.37 0.41 0.38

Table 7.13:
Performance of PLS and jointly sparse global SIMPLS applied to 3 H1N1
symptoms scores and gene expression. Wy represents the averaged L1

norm of the response weight vector. R2 represents the R square value on
the training set.

1. PLS 2. SPLS

number of comp. 3.45 2.3
number of genes 12023 233.75
Overall MSE (sum of MSEs) 0.91 0.87

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 0.0082 1 > 2: 1.11× 10−64 1 > 2: 0.1098

Table 7.14:
Overall performance of PLS and jointly sparse global SIMPLS applied to
8 HRV UVA symptoms scores and gene expression.
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PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Sneezing 0.06 0.06 0.24 0.24 0.30 0.33

Runny Nose 0.17 0.16 0.45 0.45 0.30 0.32

Nasal Obstruc. 0.32 0.30 0.64 0.57 0.34 0.36

Sore Throat 0.22 0.22 0.47 0.52 0.27 0.33

Cough 0.05 0.05 0.10 0.09 0.05 0.05

Headache 0.02 0.02 0.06 0.08 0.08 0.10

Malaise 0.06 0.05 0.18 0.16 0.16 0.20

Chilliness 0.00 0.00 0.00 0.00 0.00 0.00

Table 7.15:
Performance of PLS and jointly sparse global SIMPLS applied to 8 HRV
UVA symptoms scores and gene expression. Wy represents the averaged
L1 norm of the response weight vector. R2 represents the R square value
on the training set.

1. PLS 2. SPLS

number of comp. 3.5 2.15
number of genes 12023 200.5
Overall MSE 0.53 0.51

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 0.0074 1 > 2: 1.04× 10−63 1 > 2: 0.1975

Table 7.16:
Overall performance of PLS and jointly sparse global SIMPLS applied to
3 HRV UVA symptoms scores and gene expression.

PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Sneezing 0.06 0.06 0.28 0.30 0.31 0.35

Runny Nose 0.17 0.16 0.51 0.55 0.33 0.36

Nasal Obstruc. 0.30 0.29 0.77 0.73 0.42 0.40

Table 7.17:
Performance of PLS and jointly sparse global SIMPLS applied to 3 HRV
UVA symptoms scores and gene expression. Wy represents the averaged
L1 norm of the response weight vector. R2 represents the R square value
on the training set.
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1. PLS 2. SPLS

number of comp. 3.26 1.17
number of genes 12023 112.26
Overall MSE 1.64 1.54

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 2.06× 10−7 1 > 2: 2.02× 10−79 1 > 2: 4.9× 10−4

Table 7.18:
Overall performance of PLS and jointly sparse global SIMPLS applied to
10 HRV DUKE symptoms scores and gene expression.

PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.27 0.23 0.49 0.52 0.43 0.38

Stuffy nose 0.33 0.30 0.57 0.54 0.41 0.32

Sneezing 0.14 0.13 0.30 0.33 0.28 0.29

Sore throat 0.16 0.17 0.24 0.22 0.18 0.11

Earache 0.17 0.18 0.31 0.30 0.27 0.19

Malaise 0.27 0.26 0.29 0.35 0.26 0.21

Cough 0.02 0.02 0.06 0.05 0.09 0.07

Short. of breaths 0.23 0.22 0.24 0.17 0.11 0.06

Headache 0.01 0.01 0.03 0.04 0.05 0.06

Myalgia 0.03 0.03 0.07 0.07 0.09 0.07

Table 7.19:
Performance of PLS and jointly sparse global SIMPLS applied to 10 HRV
DUKE symptoms scores and gene expression. Wy represents the averaged
L1 norm of the response weight vector. R2 represents the R square value
on the training set.

1. PLS 2. SPLS

number of comp. 2.87 1
number of genes 12023 79.26
Overall MSE 0.71 0.65

p-values of one sided paired t-test:
method number of comp. number of var. MSE

(1,2) 1 > 2: 2.38× 10−9 1 > 2: 7.82× 10−91 1 > 2: 0.0046

Table 7.20:
Overall performance of PLS and jointly sparse global SIMPLS applied to
3 HRV DUKE symptoms scores and gene expression.
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PLS MSE SPLS MSE PLS Wy SPLS Wy PLS R2 SPLS R2

Runny nose 0.26 0.23 0.61 0.65 0.45 0.37

Stuffy nose 0.31 0.29 0.70 0.64 0.43 0.31

Sneezing 0.14 0.13 0.36 0.41 0.28 0.29

Table 7.21:
Performance of PLS and jointly sparse global SIMPLS applied to 3 HRV
DUKE symptoms scores and gene expression. Wy represents the averaged
L1 norm of the response weight vector. R2 represents the R square value
on the training set.

Set 1 Set 2 Set 3
9MC, 8SC, 7FC 9FC, 8MC, 7SC 9SC, 8FC, 7MC
9SS, 8FS, 7MS 9MS, 8SS, 7FS 9FS, 8MS, 8SS
9FG, 8MG, 7SG 9SG, 8FG, 7MG 9MG, 8SG, 7FG

Table 7.22:
Data sets used as validation sets. S: cabernet sauvignon, F: cabernet
franc, M: merlot, G:gravel, S: sand, C: clay, 7: 1997, 8: 1998, 9:1999

three different varieties of grape (cepage): cabernet sauvignon, cabernet franc and

merlot noir; for three different years: 1997, 1998 and 1999; and for three different soils:

clay, sand and gravel were collected. The reverse hieteronuclear 2D NMR (HMBC)

was then measured from each total phenolic contents (TPC), a chemometric tech-

nique. We apply ANOVA to preprocess the data in [116], and reduce the dimension

of the data to p = 21938. Since there are triple replicates for each kind of wine, we

follow the splitting of the data in [116], listed in Table 7.22.

To map the categorical responses to the space in R, we map the classes onto the

verteces of an equilateral triangle. We apply the standard PLS regression (denoted

as PLS), the jointly sparse global SIMPLS regression (denoted as SPLS in the per-

formance table) and the multi-class sparse SVM in Chapter V to the dataset. The

multi-response PLS-R is modeled to predict all the 3 responses, cepage, soil and year,

together, whereas the single response PLS-R builds a model for each response. Sparse

SVM treats each of the response as a 3 class classification problem. Results are shown

in Table 7.23 and 7.24.
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method Cepage Soil Year number of number of
error rate error rate error rate variables components

PLS 0.037 0.111 0.074 21938 6
SPLS 0.037 0.124 0.136 4324 8.333

Table 7.23: Results of wine classification by multi-response PLS methods.

Cepage
method error rate number of variables number of components
PLS 0.037 21938 2.667
SPLS 0.074 787.333 3.667
sparse SVM 0.049 101.667 NA

Soil
method error rate number of variables number of components
PLS 0.111 21938 4
SPLS 0.222 433 3.667
sparse SVM 0.086 2443.3 NA

Year
method error rate number of variables number of components
PLS 0.074 21938 4
SPLS 0.124 5772 4
sparse SVM 0.074 1392.7 NA

Table 7.24:
Results of wine classification by single-response PLS and SVM methods.
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This experiment on agriculture data raises an interesting question about the use

of PLS regression in categorical responses. In most of the comparisons, sparse SVM

outperforms both the PLS-R and jointly sparse global SIMPLS-R. This may suggest

that we should map the categorical responses to continuous responses in different

ways, or design PLS for categorical responses. We discuss the extensions further in

Chapter VIII.

7.9 Conclusion

The formulation of the SIMPLS objective function with an added group sparsity

penalty greatly reduces the number of variables used to predict the response. This

suggests that when multiple components are desired, the variable selection technique

should take into account the sparsity structure for the same variables among all the

components. Our proposed jointly sparse global SIMPLS algorithm is able to achieve

as good or better performance with fewer predictor variables and fewer components as

compared to competing methods. It is thus useful for performing dimension reduction

and variable selection simultaneously in applications with large dimensional data but

comparatively few samples (n < p).

The ADMM algorithm splits the optimization into the global SIMPLS eigen-

decomposition problem and the soft-thresholding for sparsity constraints. This sug-

gests that we can impose more complicated regularization tailored for each application

and solve the optimization by ADMM. For example, in the chemometric application,

the data is smooth over the wavelengths and we can apply wavelet shrinkage on the

data or include a total variation regularization to encourage smoothness. The sparsity

constraints can be imposed on the wavelet coefficients if wavelet shrinkage is applied,

or together with the total variation regularization. The equivalence of soft wavelet

shrinkage and total variation regularization was discussed in [117].
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CHAPTER VIII

Conclusion and Future Work

This thesis consists of four main topics of high dimensional small sample size

leaning motivated by learning from electrocardiograms: the binary classification with

group structured sparsity constraint, the multi-class classification with sparsity con-

straint for variable selection, the uneven margin support vector machine for imbal-

anced learning, and the globally sparse partial least squares regression.

In Chapter II, we have shown the value of the electrograms from ICDs, and devel-

oped quantitative measurement to describe the spatial resolution of ECGs and EGMs.

We have also demonstrated that automated learning of the origin of the VT is possible

with ECGs, which can reduce the surgery time during ablation procedure. The work

suggested that learning from these high dimensional data and sometimes with imbal-

anced sample sizes requires more sophisticated methods. The high dimensional data

can be easily overfitted, and if the underlying model is sparse, then imposing sparsity

constraints to the original statistical problem can be a solution to this problem.

Chapter III is a review of optimization for group structured variable selection, in

which we have discussed the augmented Lagrangian and ADMM algorithm. These

techniques enable us to develop algorithms for the sparse statistical learning in the

chapters that follow. In Chapter IV, we proposed the SVM with group structured

variable selection. Application to 3D cell Microscopy showed significant improve-
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ments as compared with standard SVM without sparsity constraints. In Chapter V,

we have formulated the optimization for multi-block multi-class classification with

structured variable selection. Applying our algorithm developed based on augmented

Lagrangian to predictive health problems, we have shown the benefit of structured

variable selection, such as improving performance, using less predictor variables, and

providing insights to the underlying model.

Chapter VI is a study of another aspect of small sample size issue: the imbal-

anced classification problems. Here, the sample size is small for one of the classes.

The decision boundary of classical learning methods can be greatly skewed because

the minority class is outnumbered by the majority class. We have reviewed the com-

mon strategies developed for these problems, and concluded that the α-classification

calibrated loss function performs better than those that are not. The additional

margin parameter provides the ability to adapt to the imbalanced data.

In Chapter VII, we again looked for sparse solution to supervised methods, the

partial least squares regression. With structured variable selection technique, we

were able to select the minimum set of predictor variables that are used for all the

components. Improved performance is attained with less variables and components.

This suggested standard PLS methods may face the problem of overfitting in the high

dimensional data.

Some possible future work motivated by this thesis includes:

(1) Extension of PLS regression to categorical responses. In Chapter VII, we did

experiments on continuous response (Octane data), ordinal responses (symptoms) and

categorical responses (wine data). One would expect that classification techniques

should perform better than regression on categorical data. Indeed, in the experiment

on wine data, SVM performs better on the average than ordinary PLS. How to extend

PLS methodology to categorical responses remains an open question. We propose

developing methodology for probabilistic PLS discriminant analysis. Some relevant
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work in the literature includes [118][119] [120][121]. Although PLS was designed for

continuous response variables, the latent model successfully solve the colinear issues

in high-dimensional data, which may be applicable to categorical responses. This will

enable us to perform dimension reduction, variable selection and classification simul-

taneously. The difficulty is that by modeling the response variables by multinomial

distribution, the probabilistic PLS does not reduce a simple eigen-decomposition as

in the Gaussian case [118].

(2) Global SIMPLS algorithm. We solve the global SIMPLS optimization by

greedy methods. One possible extension is to develop closer approximations for

quadratic matrix programming [122] [123] [124]. The global SIMPLS optimization

can be written as the same format in [124]. Beck was able to solve the quadratic

matrix programming optimization with K constraints [124], whereas the global SIM-

PLS has K + Ck
2 constraints. Extending the approaches in [124] may improve the

approximation. This will provide the technique to understand the difference between

global SIMPLS and SIMPLS, and better solution for the jointly sparse global SIM-

PLS. Developing performance bounds for the greedy algorithm is another possibility

to evaluate the algorithm.

(3) Multi-block PLS regression with structured variable selection. We formulated

the global SIMPLS with joint sparsity constraints. The extension from two blocks

to multi-blocks may be of interest, especially when integrating different biomedical

data becomes important, [125]. However, the number of regularization parameter

increases, and tunning the parameters becomes difficult. One possible solution is to

select the regularization parameters by optimizing the objective function, instead of

minimizing the prediction error, e.g., MSE.

(4) Convergence of ADMM methods. ADMM has been successfully applied to

statistical learning problems with structured sparsity, which is important as data

dimension increases. As discussed in Chapter III, the linear convergence rate is guar-
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anteed for strong convex functions. Studying the conditions under which convergence

is guaranteed, and the rate of convergence will be an important topic. This will

provide useful guidelines for whether solving the optimization with ADMM methods.

(5) Prescreening in multi-class classifications. We noticed that prescreening the

variables by pairwise binary classifiers for the multi-class classification improved the

performance. This was true for both simulation and real data experiments in Chapter

V. A theoretical work can be motivated by this observation. A possible direction is

to modify the generalized hinge loss function for multi-class SVMs.
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[121] U. Thissen, M. Pepers, B. Üstün, WJ Melssen, and LMC Buydens. Comparing
support vector machines to pls for spectral regression applications. Chemomet-
rics and Intelligent Laboratory Systems, 73(2):169–179, 2004.

[122] K. Anstreicher and H. Wolkowicz. On lagrangian relaxation of quadratic matrix
constraints. SIAM Journal on Matrix Analysis and Applications, 22(1):41–55,
2000.

[123] P.H. Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966.

[124] A. Beck. Quadratic matrix programming. SIAM Journal on Optimization,
17(4):1224–1238, 2007.

[125] A. Tenenhaus. Variable selection for generalized regularized canonical corre-
lation analysis. In 7th International Conference on Partial Least Squares and
Related Methods, 2012.

159


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	Background and Contributions
	Background
	Learning from High-dimensional Features
	Learning from Imbalanced Data

	Outline of the Thesis
	Publications

	SVM classifiers for Electrocardiograph Application
	Introduction
	Background
	Electrical Activity of the Heart
	Ventricular Tachycardia (VT)
	Pace-map Procedure and Radiofrequency Ablation
	Implantable Cardioverter Defibrillator (ICD)
	Recorded Signals 

	Value of Defibrillator Electrograms: Spatial Resolution and Differentiation of Ventricular Tachycardias
	Signal Alignment
	Data Analysis
	Spatial Resolution
	Differentiation of the Clinical VT
	Discussion

	Automated Analysis of the 12-lead Electrocardiogram to Identify the Exit Site of Postinfarction Ventricular Tachycardia
	Classification of the 12-lead ECG
	Determination of Spatial Resolution of the 12-lead ECG Pattern Based on Anatomic Region
	Discussion

	Conclusion

	Review of Optimization for Group Structured Variable Selection
	Introduction
	Augmented Lagrangian Methods
	Alternating Direction Method of Multipliers
	Conclusion

	 Binary Classification with Variable Selection: Application to 3D Cell Microscopy
	Introduction
	Binary Classification
	Sparse Binary Support Vector Machines
	Algorithmic Implementation
	Application: Spherical Harmonics Based Classification and Analysis of Highly Deforming Cells in 3D Microscopy
	Approach
	Spherical Harmonics Analysis

	Population Shape Discrimination and Group Structured Variable Selection
	Population features
	Loss Function and Regularization
	Group Sparsity Constraints for Spherical Harmonic Features

	Results

	Conclusion
	Appendix

	Serially Sampled Multi-class Classification with Variable Selection: Application to Gene Expression Analysis
	Introduction
	Multi-block Multi-class Classification
	Algorithmic Implementation
	Simulation Experiments
	Application: Learning Differential Gene Expression Signatures from Personalized High Throughput Screening 
	Background
	Approach
	Results
	Discussion

	Conclusion

	Uneven Margin SVMs for Imbalanced Training Samples
	Introduction
	Classification with Imbalanced Data
	Data-level Resampling Strategy
	Algorithmic-level Loss Calibration

	Calibrated Surrogate Losses
	Simulation Experiments
	Application: H3N2 Challenge Study
	Conclusion
	Appendix 1: Kernelized Uneven Margin SVM:
	Appendix 2: Consistency of Support Vector Machines

	Jointly Sparse Global SIMPLS
	Introduction
	Partial Least Squares Regression
	Univariate response
	Multivariate response

	Mix Norm Relaxation of Subset Selection
	Algorithmic Implementation for jointly sparse Global SIMPLS
	Simulation Experiments
	Application 1: Chemometrics
	Application 2: Predictive Health Study
	Application 3: Agriculture
	Conclusion

	Conclusion and Future Work
	BIBLIOGRAPHY

