Each exercise is worth 50 points.

Exercise 1. a) The operator L_1 is defined on smooth functions of (x, y) by:

$$L_1(u) := \text{arctan}(xy) \cdot u_{xx} + \sin(x^2y^2) \cdot u_{yy}.$$

Is the operator L_1 linear? Prove your answer.

b) Does the answer change if we replace the operator L_1 by the operator L_2, which is given by:

$$L_2(u) := u_{xx} + e^u ?$$

c) Find the general solution of the PDE $u_x + x^2 u_y = 0$ by using the method of characteristics. Check that your solution solves the PDE. You don't need to show that these are all of the solutions.

Solution:

a) Given smooth functions u, v and constants a, b, we compute:

$$L_1(au + bv) = \text{arctan}(xy) \cdot (au + bv)_{xx} + \sin(x^2y^2) \cdot (au + bv)_{yy} =
$$

$$= a\left(\text{arctan}(xy) \cdot u_{xx} + \sin(x^2y^2) \cdot u_{yy} \right) + b\left(\text{arctan}(xy) \cdot u_{xx} + \sin(x^2y^2) \cdot u_{yy} \right) =
$$

$$= aL_1(u) + bL_1(v).$$

Hence, L_1 is linear.

b) We note that $L_2(0) = 1 \neq 0$, which implies that the operator is not linear. Namely, for a linear operator T, we know that $T(0) = 0$ if we substitute $a = b = 0$ into the definition of linearity.

c) The characteristic ODE is given by:

$$\frac{dy}{dx} = x^2.$$

The general solution is given by:

$$y(x) = \frac{x^3}{3} + C.$$

Hence, by using the method of characteristics, the solution u is given by:

$$u(x, y) = f\left(y - \frac{x^3}{3} \right)$$

for some (differentiable) function $f : \mathbb{R} \to \mathbb{R}$.

For u defined as above, we note that:

$$u_x(x, y) = -x^2f'\left(y - \frac{x^3}{3} \right)$$

and

$$u_y(x, y) = f'\left(y - \frac{x^3}{3} \right).$$

Hence:

$$u_x + x^2u_y = -x^2f'\left(y - \frac{x^3}{3} \right) + x^2f'\left(y - \frac{x^3}{3} \right) = 0. \quad \square$$
Exercise 2. In this exercise, we would like to find a solution to the following initial value problem:

\[\begin{align*}
 u_t - u_{xx} &= 0, \text{ for } x \in \mathbb{R}, t > 0 \\
 u(x, 0) &= x^2, \text{ for } x \in \mathbb{R}.
\end{align*} \]

(a) Let \(v := u_{xxx} \). What initial value problem does \(v \) solve?

(b) Use this observation to deduce that we can take \(v = 0 \) to be a solution of the initial value problem obtained in part (a).

c) What does this tell us about the form of \(u \)?

d) Use the latter expression to find a solution of (1). Check that the obtained function solves (1).

e) Alternatively, write the formula for a solution of (1) involving the heat kernel on \(\mathbb{R} \). Write the heat kernel explicitly in terms of exponentials. Don’t simplify the integral.

Solution:

(a) By the differentiation property of the heat equation, we deduce that \(v \) also solves the heat equation. We note that \(v_{xxx}(x, 0) = 0 \). Hence, \(v \) solves the initial value problem:

\[\begin{align*}
 v_t - v_{xx} &= 0, \text{ for } x \in \mathbb{R}, t > 0 \\
 v(x, 0) &= 0, \text{ for } x \in \mathbb{R}.
\end{align*} \]

(b) We note that the function \(v = 0 \) solves the initial value problem in part a).

c) From part b), we observe that we can look for a solution to (1) of the form:

\[u(x, t) = A(t) + B(t) \cdot x + C(t) \cdot x^2 \]

for some (differentiable) functions \(A, B, C : \mathbb{R}^+_t \to \mathbb{R} \) satisfying \(A(0) = B(0) = 0, C(0) = 1 \).

d) We note that, for \(u \) of the form (2), one has:

\[u_t - u_{xx} = (A'(t) - 2C(t)) + B'(t) \cdot x + C'(t) \cdot x^2 \]

Hence, such a \(u \) solves the heat equation if and only if:

\[\begin{align*}
 A'(t) &= 2C(t) \\
 B'(t) &= 0 \\
 C'(t) &= 0.
\end{align*} \]

From the latter two conditions, it follows that \(B \) and \(C \) are constant. Since \(B(0) = 0 \) and \(C(0) = 1 \), we deduce that:

\[B(t) = 0 \text{ and } C(t) = 1. \]

We now use the first condition to deduce that:

\[A'(t) = 2C(t) = 2. \]

Since \(A(0) = 0 \), we conclude that \(A(t) = 2t \). Putting all of this together, we obtain:

\[u(x, t) = 2t + x^2. \]

We readily check that the function \(u \) defined in (3) solves the initial value problem (1). Namely:

\[u_t = u_{xx} = 2, \text{ hence } u_t - u_{xx} = 0 \text{ and } u(x, 0) = 0 + x^2 = x^2. \]
e) We use the formula from class and recall that we are taking the diffusion coefficient to equal to 1, and hence u given by:

\[
(4) \quad u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{4t}} \cdot y^2 \, dy
\]
solves (1). □

Exercise 3. a) Show that the function $u : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ defined by $u(x) := \log |x|$ is harmonic on $\mathbb{R}^2 \setminus \{0\}$.

In the following, suppose that $\phi : \mathbb{R}^2 \to \mathbb{R}$ is a smooth function which equals zero outside of some ball centered at the origin.

b) Prove that:

\[
\lim_{\epsilon \to 0} \int_{\partial B(0,\epsilon)} \left[\log |x| \cdot \frac{\partial \phi}{\partial n} - \frac{\partial}{\partial n} \left(\log |x| \right) \cdot \phi(x) \right] dS(x) \to 2\pi \phi(0).
\]

for n being the unit normal on $\partial B(0,\epsilon)$ pointing towards the origin.

c) Use the result from part b) in order to prove:

\[
\phi(0) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x| \cdot \Delta \phi(x) \, dx.
\]

Solution:

a) We write $\log |x|$ as $\log \sqrt{x_1^2 + x_2^2}$.

By the Chain Rule, it follows that:

\[
(\log |x|)_{x_1} = \frac{1}{\sqrt{x_1^2 + x_2^2}} \cdot \frac{2x_1}{2\sqrt{x_1^2 + x_2^2}} = \frac{x_1}{x_1^2 + x_2^2}.
\]

\[
(\log |x|)_{x_2} = \frac{1}{x_1^2 + x_2^2} - \frac{2x_1^2}{(x_1^2 + x_2^2)^2}.
\]

By symmetry:

\[
(\log |x|)_{x_2} = \frac{1}{x_1^2 + x_2^2} - \frac{2x_2^2}{(x_1^2 + x_2^2)^2}.
\]

Summing the previous two identities, we obtain:

\[
\Delta \log |x| = 0.
\]

Alternatively, we can use the formula for Laplace's operator in polar coordinates:

\[
\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}
\]

in order to deduce that:

\[
\Delta \log r = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) \log r = -\frac{1}{r^2} + \frac{1}{r^2} = 0.
\]

b) \[
\lim_{\epsilon \to 0} \int_{\partial B(0,\epsilon)} \left[\log |x| \cdot \frac{\partial \phi}{\partial n} - \frac{\partial}{\partial n} \left(\log |x| \right) \cdot \phi(x) \right] dS(x) \to 2\pi \phi(0).
\]

Let us first observe that, there exists $M > 0$ independent of ϵ such that, when ϵ is sufficiently small, it is the case that:

\[
|\frac{\partial \phi}{\partial n}| \leq M.
\]
Consequently:
\[\left| \int_{\partial B(0, \epsilon)} \log |x| \frac{\partial \phi}{\partial n} \, dS \right| = \left| \log(\epsilon) \right| \left| \int_{\partial B(0, \epsilon)} \frac{\partial \phi}{\partial n} \, dS \right| \leq \left| \log(\epsilon) \right| \int_{\partial B(0, \epsilon)} \left| \frac{\partial \phi}{\partial n} \right| \, dS \leq 2\pi M \epsilon \left| \log(\epsilon) \right|. \]

Let us now observe that:
\[\lim_{x \to 0^+} (x \log x) = 0. \]

This fact follows from L'Hôpital's rule since:
\[\lim_{x \to 0^+} \frac{\log x}{x} = \lim_{x \to 0^+} \frac{(\log x)'}{1} = \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} (-x) = 0. \]

Consequently, the integral of the first term goes to zero as \(\epsilon \to 0 \).

We now need to look at the integral of the second term, Let us note that:
\[\frac{\partial}{\partial n} \log |x| = (\nabla \log |x|) \cdot n. \]

From the calculations in part a), it follows that:
\[\nabla \log |x| = \left((\log |x|)_{x_1}, (\log |x|)_{x_2} \right) = \left(\frac{x_1}{x_1^2 + x_2^2}, \frac{x_2}{x_1^2 + x_2^2} \right) = \frac{x}{|x|^2}. \]

By definition, we obtain that on \(\partial B(0, \epsilon) \), one has:
\[n = -\frac{x}{\epsilon}. \]

Hence:
\[\frac{\partial}{\partial n} \log |x| = -\frac{1}{\epsilon} \frac{x \cdot x}{|x|^2} = -\frac{1}{\epsilon}. \]

Alternatively, we can use polar coordinates and see that:
\[\frac{\partial}{\partial n} \log |x| = -\frac{\partial}{\partial r} \log r = -\frac{1}{r} = -\frac{1}{\epsilon} \]
on \(\partial B(0, \epsilon) \). It follows that:
\[\int_{\partial B(0, \epsilon)} \left[-\frac{\partial}{\partial n} \left(\log |x| \right) \right] \cdot \phi(x) \, dS(x) = \frac{1}{\epsilon} \int_{\partial B(0, \epsilon)} \phi(x) \, dS(x) \to 2\pi \phi(0) \text{ as } \epsilon \to 0. \]

c) Let us assume that \(\phi = 0 \) outside of \(B(0, R) \subseteq \mathbb{R}^2 \) and let \(\epsilon \in (0, R) \) be given. We let:
\[\Omega_\epsilon := B(0, 2R) \setminus B(0, \epsilon). \]

From part a), we know that, on \(\mathbb{R}^2 \setminus \{0\} \):
\[\Delta \log |x| = 0. \]

We now apply Green's second identity, noting that \(\phi \) and \(\log |x| \) are both smooth on \(\Omega_\epsilon \) in order to deduce that:
\[\int_{\Omega_\epsilon} \left[\log |x| \cdot \Delta \phi(x) - \Delta \log |x| \cdot \phi(x) \right] \, dx = \int_{\partial \Omega_\epsilon} \left[\log |x| \cdot \frac{\partial \phi}{\partial n} - \frac{\partial}{\partial n} \left(\log |x| \right) \cdot \phi(x) \right] \, dS(x). \]

We note that \(\partial \Omega_\epsilon \) consists of two parts: \(\partial B(0, \epsilon) \) and \(\partial B(0, 2R) \). Since, by assumption, \(\phi \) vanishes near \(\partial B(0, 2R) \), it follows that the contribution to the right-hand side from the outer boundary \(\partial B(0, 2R) \) equals to zero. Moreover, we know that \(\Delta \log |x| = 0 \) on \(\Omega_\epsilon \). Hence, it follows that:
\[\int_{\Omega_\epsilon} \log |x| \cdot \Delta \phi(x) \, dx = \int_{\partial B(0, \epsilon)} \left[\log |x| \cdot \frac{\partial \phi}{\partial n} - \frac{\partial}{\partial n} \left(\log |x| \right) \cdot \phi(x) \right] \, dS(x). \]

We note that \(\Delta \phi = 0 \) for \(|x| \geq 2R \) and we deduce that:
\[\int_{|x| \geq \epsilon} \log |x| \cdot \Delta \phi(x) \, dx = \int_{\partial B(0, \epsilon)} \left[\log |x| \cdot \frac{\partial \phi}{\partial n} - \frac{\partial}{\partial n} \left(\log |x| \right) \cdot \phi(x) \right] \, dS(x). \]
We now let $\epsilon \to 0$ and we use the result from part b) in order to deduce that:

$$\int_{\mathbb{R}^2} \log |x| \cdot \Delta \phi(x) \, dx = 2\pi \phi(0).$$

The claim now follows. □

Exercise 4. Let us recall the representation formula for harmonic functions in three dimensions:

For $\Omega \subseteq \mathbb{R}^3$ a bounded domain, u a harmonic function on Ω which extends continuously up to $\partial \Omega$, and $x_0 \in \Omega$, the following formula holds:

$$u(x_0) = \frac{1}{4\pi} \int_{\partial \Omega} \left[-u(y) \frac{\partial}{\partial n} \left(\frac{1}{|y-x_0|} \right) + \frac{1}{|y-x_0|} \frac{\partial u}{\partial n} \right] \, dS(y).$$

Here, n denotes the outward pointing unit normal on $\partial \Omega$.

In this exercise, one is allowed to use the representation formula without proof.

a) State the mean value property for harmonic functions in three-dimensions.

b) Use the representation formula in order to prove the mean value property in three dimensions.

c) State the definition of the Green’s function $G(x, x_0)$ for the Laplace operator on a three-dimensional domain Ω with x_0 a point in Ω.

d) Use the representation formula and properties of the Green’s function to show that the harmonic function u defined in the beginning of the problem satisfies:

$$u(x_0) = \int_{\partial \Omega} u(y) \cdot \frac{\partial G(x, x_0)}{\partial n} \, dS(y).$$

Solution:

a) Let $x_0 \in \mathbb{R}^3$ and $R > 0$ are given and suppose that $u : B(x_0, R) \to \mathbb{R}^3 \to \mathbb{R}$ is a harmonic function which extends continuously up to $\partial B(x_0, R)$. The mean value property then states that:

$$u(x_0) = \frac{1}{4\pi R^2} \int_{\partial B(x_0, R)} u(y) \, dS(y).$$

b) We can replace the function u with the function $v(x) := u(x - x_0)$ to see that it suffices to prove the claim in the special case when $x = 0$. It is important to note that the function v is harmonic if the function u is harmonic.

In other words, we are assuming that $u : B(0, R) \to \mathbb{R}$ is harmonic and that it extends continuously up to $\partial B(0, R)$ and we want to prove that:

$$u(0) = \frac{1}{4\pi R^2} \int_{\partial B(0, R)} u(y) \, dS(y)$$

by using the fact that:

$$u(0) = \frac{1}{4\pi} \int_{\partial B(0, R)} \left[-u(y) \frac{\partial}{\partial n} \left(\frac{1}{|y|} \right) + \frac{1}{|y|} \frac{\partial u}{\partial n} \right] \, dS(y).$$

Let us first note that we can use polar coordinates to deduce that, on $\partial B(0, R)$, we can write $\frac{\partial}{\partial n} = \frac{\partial}{\partial r}$. Hence:

$$\frac{\partial}{\partial n} \left(\frac{1}{|y|} \right) = \frac{\partial}{\partial r} \left(\frac{1}{r} \right) = -\frac{1}{r^2}. $$
It follows that:

\[
\frac{1}{4\pi} \int_{\partial B(0,R)} \left[-u(y) \frac{\partial}{\partial n} \left(\frac{1}{|y|} \right) \right] dS(y) = \frac{1}{4\pi R^2} \int_{\partial B(0,R)} u(y) dS(y). \tag{5}
\]

Moreover, we note that:

\[
\frac{1}{4\pi} \int_{\partial B(0,R)} \frac{1}{|y|} \frac{\partial u}{\partial n} dS(y) = \frac{1}{4\pi R} \int_{\partial B(0,R)} \nabla u \cdot n dS(y)
\]

which, by the Divergence Theorem equals:

\[
\frac{1}{4\pi R} \int_{B(0,R)} \Delta u(y) dy = 0. \tag{6}
\]

The claim now follows from (5) and (6).

c) Suppose that \(\Omega \subseteq \mathbb{R}^3 \) is a bounded domain with \(x_0 \in \Omega \). The Green’s function \(G(x, x_0) \) is a function defined on \(\Omega \setminus \{x_0\} \), which is continuous up to \(\partial \Omega \), and which satisfies the following properties:

1) \(G(x, x_0) \) is a harmonic function on \(\Omega \setminus \{x_0\} \).
2) \(G(x, x_0) = 0 \) for \(x \in \partial \Omega \).
3) \(H(x, x_0) := G(x, x_0) + \frac{1}{4\pi|x-x_0|} \) is harmonic on \(\Omega \).

d) We recall from property 3) in part c) that the function \(H(x, x_0) = G(x, x_0) + \frac{1}{4\pi|x-x_0|} \) is harmonic on \(\Omega \). We also know that the function \(u \) is harmonic on \(\Omega \). Hence, by Green’s second identity:

\[
0 = \int_{\partial \Omega} \left[u(x) \frac{\partial H(x, x_0)}{\partial n} - H(x, x_0) \frac{\partial u}{\partial n} \right] dS(x).
\]

By the representation formula, we know that:

\[
u(x_0) = \int_{\partial \Omega} \left[u(x) \frac{\partial G(x, x_0)}{\partial n} - G(x, x_0) \frac{\partial u}{\partial n} \right] dS(x).
\]

By using property 3) of Green’s functions, it follows that:

\[
u(x_0) = \int_{\partial \Omega} \left[u(x) \frac{\partial G(x, x_0)}{\partial n} - G(x, x_0) \frac{\partial u}{\partial n} \right] dS(x)
\]

By property 2), we know that \(G(x, x_0) = 0 \) for \(x \in \partial \Omega \). Hence:

\[
u(x_0) = \int_{\partial \Omega} u(x) \frac{\partial G(x, x_0)}{\partial n} dS(x)
\]

as was claimed. □

Exercise 5. Throughout this exercise, we assume that \(c > 0 \) is a constant.

a) Consider the differential operator \(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} \), defined on smooth functions of \((x, t) \in \mathbb{R} \times \mathbb{R} \).

Show that there exist first-order differential operators \(T_1 \) and \(T_2 \) such that for all smooth functions \(u : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \), the following identity holds:

\[
\left(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} \right) u = T_1 T_2 u.
\]

b) What is the physical interpretation of the operators \(T_1 \) and \(T_2 \)?

c) Using the above factorization, show that the general solution to the wave equation on \(\mathbb{R} \times \mathbb{R} \):

\[
u_{tt} - c^2 u_{xx} = 0
\]

is given by:

\[
u(x, t) = f(x - ct) + g(x + ct)
\]
for some functions $f, g : \mathbb{R} \to \mathbb{R}$.

d) Check that the function u obtained in part c) solves the wave equation. How many derivatives do the functions f and g need to have in order for this calculation to be rigorous?

Solution:

a) We note that:

$$\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x} \right).$$

More precisely, for $u : \mathbb{R} \times \mathbb{R}_t \to \mathbb{R}$, the following identity holds:

$$\left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x} \right) u = \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x} \right) \left(u_t + cu_x \right) =
\begin{align*}
= & \ u_{tt} + cu_{xt} - cu_{tx} - c^2 u_{xx} = u_{tt} - c^2 u_{xx} = \left(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} \right) u.
\end{align*}$$

Hence, we can take:

$$T_1 = \frac{\partial}{\partial t} - c \frac{\partial}{\partial x},$$
$$T_2 = \frac{\partial}{\partial t} + c \frac{\partial}{\partial x}.$$

b) The operators T_1 and T_2 correspond to transport with speed c to the left and to the right respectively.

c) Suppose that:

$$u_{tt} - c^2 u_{xx} = 0.$$

By part a), we can write this equation as:

$$\left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x} \right) u = 0.$$

Let us take:

$$G(x, t) := u_t + cu_x.$$

We can then deduce that:

$$G_t - cG_x = 0.$$

Hence, G solves the transport equation. It follows that:

$$G(x, t) = H(x + ct)$$

for some (differentiable) function $H : \mathbb{R} \to \mathbb{R}$. We substitute this back into the definition of the function G to deduce that u then has to solve:

$$u_t + cu_x = G(x, t) = H(x + ct).$$

In particular, u solves an inhomogeneous transport equation. We note that the general solution of the associated homogeneous equation:

$$u^{(h)}_{tt} + cu^{(h)}_{xx} = 0$$

is given by:

$$u^{(h)}(x, t) = f(x - ct)$$

for some (differentiable) function $f : \mathbb{R} \to \mathbb{R}$. Hence, we need to find a particular solution $u^{(p)}$ of (7). Since the right-hand side is a function of $x + ct$, we look for a particular solution which is a function of $x + ct$ as well. In particular, we look for a solution of the form:

$$u^{(p)}(x, t) = g(x + ct)$$
for some (differentiable) function $g : \mathbb{R} \to \mathbb{R}$. For $u^{(p)}$ defined as above, we note that:

$$u_t^{(p)} + cu_x^{(p)} = (1 + c) \cdot g'(x + ct).$$

Hence, we want to choose h in such a way that:

$$(1 + c)g'(x + ct) = H(x + ct).$$

In particular, we can take:

$$g(y) := \frac{1}{1+c} \int_0^y H(s) \, ds.$$

Consequently, we obtain that:

$$u(x, t) = f(x - ct) + g(x + ct).$$

d) For u defined as in part c), we note that:

$$u_t = -cf'(x - ct) + cg'(x + ct)$$

$$u_{tt} = c^2 f''(x - ct) + c^2 g''(x + ct)$$

$$u_x = f'(x - ct) + g'(x + ct)$$

$$u_{xx} = f''(x - ct) + g''(x + ct).$$

In particular, it follows that:

$$u_{tt} = c^2 u_{xx} = c^2 f''(x - ct) + c^2 g''(x + ct)$$

and so:

$$u_{tt} - c^2 u_{xx} = 0.$$

In order to make this calculation rigorous, we need to assume that the functions $f, g : \mathbb{R} \to \mathbb{R}$ are twice differentiable. □