MATH 425, MIDTERM EXAM 2, SOLUTIONS.

Each exercise is worth 25 points.

Exercise 1. Consider the initial value problem:

\[
\begin{align*}
 u_t - u_{xx} &= 0, \quad 0 < x < 1, \ t > 0 \\
 u(x, 0) &= x(1 - x), \quad 0 \leq x \leq 1 \\
 u(0, t) &= 0, \ u(1, t) = 0, \ for \ t > 0.
\end{align*}
\]

(a) Find the maximum of the function \(u \) on \([0, 1]_x \times [0, +\infty)_t\).

(b) Show that, for all \(0 \leq x \leq 1, t \geq 0:\)

\[u(x, t) \geq 0. \]

(c) Show that, for all \(0 \leq x \leq 1, t \geq 0:\)

\[u(x, t) \leq x(1 - x)e^{-8t}. \]

(d) Given \(x \in [0, 1]\), calculate \(\lim_{t \to \infty} u(x, t)\).

Solution:

(a) We observe that the function \(u \) equals zero on the lateral sides \(x = 0 \) and \(x = 1 \). Hence, by the Maximum Principle, it has to achieve its maximum on the bottom side \(t = 0 \). The function \(x(1 - x) \) achieves its maximum \(\frac{1}{4} \) at \(x = \frac{1}{2} \). Hence, the maximum of \(u \) equals \(\frac{1}{4} \) and it is achieved at the point \((x, t) = (\frac{1}{2}, 0)\).

(b) **First solution:** We apply the Minimum Principle. We note by (2) that the function \(u \) is non-negative on the lateral sides \((x = 0 \) and \(x = 1 \)) and on the bottom side \((t = 0)\) of the infinite rectangle \([0, 1]_x \times [0, +\infty)_t\). The claim then follows from the minimum principle. Strictly speaking, we should apply the Minimum Principle stated in class on a finite rectangle \([0, 1]_x \times [0, T)_t\) and then let \(T \to +\infty \).

Second solution: We can apply the Comparison Principle, which was proved in Exercise 3 of Homework Assignment 4. We can summarize this principle as follows:

Suppose that:

\[
\begin{align*}
 v_t - v_{xx} &\geq w_t - w_{xx}, \ for \ 0 < x < 1, \ t > 0 \\
 v(x, 0) &\geq w(x, 0), \ for \ 0 \leq x \leq 1 \\
 v(0, t) &\geq w(0, t), \ v(1, t) \geq w(1, t), \ for \ t > 0.
\end{align*}
\]

Then:

\[v(x, t) \geq w(x, t) \]

for all \(x \in [0, 1], t > 0\). In other words, if \(v_t - v_{xx} \geq w_t - w_{xx} \) and if \(v \geq w \) on the bottom and lateral sides of \([0, 1]_x \times [0, +\infty)_t\), then we can deduce that \(v \geq w \) on all of \([0, 1]_x \times [0, +\infty)_t\).

We now apply the Comparison Principle. Let us note \(u = 0 \) on the lateral sides and since \(u \) equals \(x(1 - x) \), which is non-negative, on the bottom side. Hence, we can apply the Comparison Principle with \(v = u \) and with \(w = 0 \) in order to deduce the claim.
c) In part c), we will have to apply the Comparison Principle. Let us take:

\[v(x, t) := x(1 - x)e^{-8t}. \]

We compute:

\[v_t(x, t) = -8x(1 - x)e^{-8t} \]
and

\[v_{xx}(x, t) = -2e^{-8t}. \]

Hence:

\[v_t(x, t) - v_{xx}(x, t) = -8x(1 - x)e^{-8t} + 2e^{-8t} = 2(1 - 4x(1 - x))e^{-8t}. \]

Let us recall that we are considering \(x \in [0, 1] \) and so:

\[1 - 4x(1 - x) \geq 1 - 4 \cdot \frac{1}{4} = 0, \]

since \(x \mapsto x(1 - x) \) achieves its maximum on \([0, 1]\) at the point \(x = \frac{1}{2} \). Hence:

\[v_t - v_{xx} \geq 0. \]

Let us also note that:

\[v(x, 0) = u(x, 0) = x(1 - x) \]

for all \(x \in [0, 1] \).

Moreover,

\[v(0, t) = v(1, t) = u(0, t) = u(1, t) = 0 \]

for all \(t > 0 \). It follows that we can apply the Comparison Principle with \(v = x(1 - x)e^{-8t} \) as above and with \(w = u \), the solution to (2) in order to deduce the claim.

Let us fix \(x \in [0, 1] \). From parts b) and c), it follows that, for all \(t > 0 \):

\[0 \leq u(x, t) \leq x(1 - x)e^{-8t}. \]

It follows that the limit as \(t \to \infty \) of \(u(x, t) \) equals zero. \(\square \)

Exercise 2. a) Find a solution to the following boundary value problem by separation of variables:

\[
\begin{aligned}
&u_t(x, t) - u_{xx}(x, t) = \sin(5\pi x), \text{ for } 0 < x < 1, t > 0 \\
&u(x, 0) = 0, \text{ for } 0 \leq x \leq 1 \\
&u(0, t) = u(1, t) = 0, \text{ for } t > 0.
\end{aligned}
\]

b) Is this the only solution to (3)?

Solution:

a) We look for a solution of the form:

\[u(x, t) = A(t) \cdot \sin(5\pi x). \]

The reason why we look for such a solution is that the right-hand side of the equation contains a \(\sin(5\pi x) \) term. We expect that this is the only frequency that will be present in the solution. In the form of \(u \) that we are looking for, for each fixed \(t \), the function \(u(x, t) \) has a Fourier sine expansion in terms of \(\sin(5\pi x) \). The coefficient will be a function of \(t \).

Let us note that, for \(u \) defined as in (4), the boundary conditions \(u(0, t) = u(1, t) = 0 \) are satisfied since \(\sin(0) = \sin(5\pi) = 0 \).

Our goal is to choose \(A(t) \) such that \(u \) solves the inhomogeneous heat equation. We compute:

\[u_t - u_{xx} = \left\{ A'(t) + 25\pi^2 A(t) \right\} \cdot \sin(5\pi x) \]
which, by the equation, equals:
\[\sin(5\pi x) \].
We can now equate the coefficient of \(\sin(5\pi x) \) to deduce:
\[A'(t) + 25\pi^2 A(t) = 1. \]
(5)
Hence, the condition (5) guarantees that the function \(u \) defined in (4) solves the PDE.
We now need to solve for \(A(t) \). By the condition that \(u(x,0) = A(0) \cdot \sin(5\pi x) \), it follows that \(A(0) = 0 \). Hence, we need to solve the following initial value problem to determine \(A(t) \):
\[
\begin{cases}
A'(t) + 25\pi^2 A(t) = 1 \\
A(0) = 0.
\end{cases}
\]
We solve the ODE by multiplying with the integrating factor \(e^{25\pi^2 t} \). The ODE then becomes:
\[
e^{25\pi^2 t} A'(t) + 25\pi^2 e^{25\pi^2 t} A(t) = e^{25\pi^2 t}
\]
i.e.
\[
(e^{25\pi^2 t} A(t))' = e^{25\pi^2 t}.
\]
Hence:
\[
e^{25\pi^2 t} A(t) = A_0 + \frac{1}{25\pi^2} e^{25\pi^2 t}.
\]
We note that \(A(0) = 0 \) implies that \(A_0 = -\frac{1}{25\pi^2} \). Consequently:
\[
A(t) = \frac{1}{25\pi^2} \left\{ 1 - e^{-25\pi^2 t} \right\}.
\]
It follows that:
\[
u(x,t) = \frac{1}{25\pi^2} \left\{ 1 - e^{-25\pi^2 t} \right\} \cdot \sin(5\pi x).
\]
b) We know from class that the boundary value problem for the heat equation on a spatial interval of finite length admits unique solutions, either by applying the Maximum Principle or by applying the Energy Method. Hence, the function \(u \) from part a) is the unique solution to (3). □

Exercise 3. Let us recall that a function \(u : \mathbb{R}^n \to \mathbb{R} \) is called subharmonic if \(\Delta u \geq 0 \). In particular, every harmonic function is subharmonic.

a) Given a harmonic function \(u : \mathbb{R}^n \to \mathbb{R} \), show that the function \(v := u^2 \) is subharmonic on \(\mathbb{R}^n \).
b) Under which conditions on \(u \) can we deduce that the function \(v \) defined above is harmonic?

Solution:

a) We compute, for \(1 \leq j \leq n \):
\[
v_{x_j} = (u^2)_{x_j} = 2uu_{x_j}
\]
and so:
\[
v_{x_jx_j} = (u^2)_{x_jx_j} = 2u_{x_j}u_{x_j} + 2u_{x_jx_j}x_j = 2u_{x_j}^2 + 2uu_{x_jx_j},
\]
We sum in \(j = 1, \ldots, n \) in order to deduce:
\[
\Delta v = 2 \sum_{j=1}^n u_{x_j}^2 + 2u \Delta u = 2|\nabla u|^2 + 2u \Delta u.
\]
Since \(\Delta u = 0 \), this quantity equals: \(2|\nabla u|^2 \) which is non-negative. Hence, \(v \) is subharmonic.

b) From part a), we recall that:
\[
\Delta v = 2|\nabla u|^2.
\]
In particular \(v \) is harmonic if and only if \(\nabla u = 0 \), which is the case if and only if \(u \) is constant. □
Exercise 4. Suppose that \(u : B(0,1) \to \mathbb{R} \) is a harmonic function on the open ball \(B(0,1) \subseteq \mathbb{R}^2 \), which extends to a continuous function on its closure \(\overline{B}(0,1) \).

Suppose that, in polar coordinates:

\[
 u(1, \theta) = 2 + 3 \sin \theta
\]

for all \(\theta \in [0, 2\pi] \).

a) Find the minimum and the maximum of \(u \) on \(\overline{B}(0,1) \).

b) Find the value of \(u \) at the origin.

c) Find an expression for the value of \(u \) at the point \(\left(\frac{1}{2}, \frac{\pi}{2} \right) \) in polar coordinates by using Poisson’s formula. Don’t explicitly evaluate the integral.

d) Does there exist a point in \(B(0,1) \) at which \(u \) takes the value 5?

Solution:

a) We use the Weak Maximum Principle for the Laplace equation in order to deduce that \(u \) achieves its maximum and minimum on the boundary. More precisely:

\[
 \min_{\overline{B}(0,1)} u = \min_{\partial B(0,1)} u
\]

and

\[
 \max_{\overline{B}(0,1)} u = \max_{\partial B(0,1)} u.
\]

We know that for all \(\theta \in [0, 2\pi] \):

\[
 -1 \leq 2 + 3 \sin \theta \leq 5.
\]

Moreover:

\[
 2 + 3 \sin \left(\frac{3\pi}{2} \right) = -1
\]

and

\[
 2 + 3 \sin \left(\frac{\pi}{2} \right) = 5.
\]

Hence:

\[
 \min_{\overline{B}(0,1)} u = \min_{\partial B(0,1)} u = -1
\]

and

\[
 \max_{\overline{B}(0,1)} u = \max_{\partial B(0,1)} u = 5.
\]

b) We can use the Mean Value Property to deduce that the value of \(u \) at the origin equals the average of the function \(u \) on the circle \(\partial B(0,1) \). In particular:

\[
 u(0) = \frac{1}{2\pi} \int_0^{2\pi} (2 + 3 \sin \theta) \, d\theta = 2,
\]

since \(\int_0^{2\pi} \sin \theta \, d\theta = 0 \).

c) We use Poisson’s formula and we compute:

\[
 u \left(\frac{1}{2}, \frac{\pi}{2} \right) = \frac{1 - (\frac{1}{2})^2}{2\pi} \cdot \int_0^{2\pi} \frac{2 + 3 \sin \phi}{(\frac{1}{2})^2 - 2 \cdot \frac{1}{2} \cdot 1 \cos(\frac{\pi}{2} - \phi) + 1} \, d\phi = \frac{3}{2\pi} \cdot \int_0^{2\pi} \frac{2 + 3 \sin \phi}{5 - 4 \sin \phi} \, d\phi.
\]
d) Suppose that there were a point $x_0 \in B(0, 1)$ at which $u(x_0) = 5$, then by part a), it would follow that:

$$u(x_0) = \max_{B(0,1)} u.$$

Hence, u achieves its maximum at an interior point. The Strong Maximum Principle would then imply that u was constant. However, u is not constant on the boundary $\partial B(0, 1)$, which gives us a contradiction. Hence, there is no such point x_0 in the interior. □